Skip to main content

Towards a Cloud Robotics Platform for Distributed Visual SLAM

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 10528)

Abstract

Cloud computing allows robots to offload computation and share information as well as skills. Visual SLAM is one of the intensively computational tasks for mobile robots. It can benefit from the cloud. In this paper, we propose a novel cloud robotics platform named RSE-PF for distributed visual SLAM with close attention to the infrastructure of the cloud. We implement it with Amazon Web Services and OpenResty. We demonstrate the feasibility, robustness, and elasticity of the proposed platform with a use case of perspective-n-point solution. In this use case, the average round-trip delay is 153 ms, which meets the near real-time requirement of mobile robots.

Keywords

  • Cloud robotics
  • Mobile robots
  • Visual SLAM
  • Perspective-n-point

This work was sponsored by the Research Grant Council of Hong Kong SAR Government, China, under project No. 16212815, 21202816 and National Natural Science Foundation of China No. 6140021318 and 61640305; Shenzhen Science, Technology and Innovation Comission (SZSTI) JCYJ20160428154842603 and JCYJ20160401100022706; partially supported by the HKUST Project IGN16EG12. All rewarded to Prof. Ming Liu.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68345-4_1
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-68345-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Notes

  1. 1.

    http://www.ros.org/.

  2. 2.

    https://aws.amazon.com/.

  3. 3.

    https://cloud.google.com/compute/.

  4. 4.

    https://OpenResty.org/.

References

  1. Liu, M.: Robotic online path planning on point cloud. IEEE Trans. Cybern. 46(5), 1217–1228 (2016)

    CrossRef  Google Scholar 

  2. Gianni, M., Papadakis, P., Pirri, F., Liu, M., Pomerleau, F., Colas, F., Zimmermann, K., Svoboda, T., Petricek, T., Kruijff, G.J.M.: A unified framework for planning and execution-monitoring of mobile robots. In: AAAI Conference on Automated Action Planning for Autonomous Mobile Robots, pp. 39–44 (2011)

    Google Scholar 

  3. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    CrossRef  Google Scholar 

  4. Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Kumar, A.S., Meng, K.D., Kit, G.W.: DAvinCi: a cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3084–3089. IEEE (2010)

    Google Scholar 

  5. Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.: Rapyuta: the roboearth cloud engine. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 438–444. IEEE (2013)

    Google Scholar 

  6. Waibel, M., Beetz, M., Civera, J., d’Andrea, R., Elfring, J., Galvez-Lopez, D., Häussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., et al.: Roboearth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011)

    CrossRef  Google Scholar 

  7. Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., Waibel, M.: Cloud-based collaborative 3D mapping in real-time with low-cost robots. IEEE Trans. Autom. Sci. Eng. 12(2), 423–431 (2015)

    CrossRef  Google Scholar 

  8. Beksi, W.J., Spruth, J., Papanikolopoulos, N.: CORE: a cloud-based object recognition engine for robotics. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4512–4517. IEEE (2015)

    Google Scholar 

  9. Wang, L., Liu, M., Meng, M.Q.-H.: A hierarchical auction-based mechanism for real-time resource allocation in cloud robotic systems. IEEE Trans. Cybern. 47(2), 473–484 (2017)

    Google Scholar 

  10. Rahman, A., Jin, J., Cricenti, A., Rahman, A., Yuan, D.: A cloud robotics framework of optimal task offloading for smart city applications. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2016)

    Google Scholar 

  11. Mell, P., Grance, T., et al.: The NIST Definition of Cloud Computing (2011)

    Google Scholar 

  12. Lubbers, P., Albers, B., Salim, F., Pye, T.: Pro HTML5 Programming. Springer, Heidelberg (2011). doi:10.1007/978-1-4302-3865-2

    CrossRef  Google Scholar 

  13. Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)

    CrossRef  Google Scholar 

  14. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33715-4_54

    CrossRef  Google Scholar 

  15. Sun, Y., Liu, M., Meng, Q.H.: WiFi signal strength-based robot indoor localization. In: IEEE International Conference on Information and Automation, pp. 250–256 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yun, P., Jiao, J., Liu, M. (2017). Towards a Cloud Robotics Platform for Distributed Visual SLAM. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)