Sermanet, P., Eigen, D., Zhang, X., et al.: Overfeat: integrated recognition, localization and detection using convolutional networks. In: ICLR (2014)
Google Scholar
Mittal, G., Yagnik, K.B., Garg, M., Krishnan, N.: Spotgarbage: smartphone app to detect garbage using deep learning. In: UbiComp (2016)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
Google Scholar
Sudha, S., Vidhyalakshmi, M., Pavithra, K., et al.: An automatic classification method for environment. In: TIAR (2016)
Google Scholar
Carlos, B.L.J., Alejandro, R., Manuel, E.: Automatic waste classification using computer vision as an application in colombian high schools. In: LACNEM (2015)
Google Scholar
Sakr, G., Mokbel, M., Darwich, A.: Comparing deep learning and support vector machines for autonomous waste sorting. In: IMCIT (2016)
Google Scholar
Stewart, R., Andriluka, M.: End-to-end people detection in crowded scenes. In: CVPR (2015)
Google Scholar
Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. CoRR, abs/1409.4842 (2014)
Google Scholar
Abadi, M., Agarwal, A., Barham, P., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/
Deng, J., Dong, W., Socher, R., et al.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Google Scholar
Jia, Y., Caffe, S., et al.: Convolutional architecture for fast feature embedding. arXiv:1408.5093’14
Everingham, M., Van Gool, L., Williams, C.K.I., et al.: The pascal visual object classes (VOC) challenge. In: IJCV (2010)
Google Scholar