Skip to main content

On Scale Initialization in Non-overlapping Multi-perspective Visual Odometry

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10528))

Included in the following conference series:

Abstract

Multi-perspective camera systems pointing into all directions represent an increasingly interesting solution for visual localization and mapping. They combine the benefits of omni-directional measurements with a sufficient baseline for producing measurements in metric scale. However, the observability of metric scale suffers from degenerate cases if the cameras do not share any overlap in their field of view. This problem is of particular importance in many relevant practical applications, and it impacts most heavily on the difficulty of bootstrapping the structure-from-motion process. The present paper introduces a complete real-time pipeline for visual odometry with non-overlapping, multi-perspective camera systems, and in particular presents a solution to the scale initialization problem. We evaluate our method on both simulated and real data, thus proving robust initialization capacity as well as best-in-class performance regarding the overall motion estimation accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Keyframes are simply frames that are retained in a buffer of frames due to sufficient local distinctiveness [10].

References

  1. Agarwal, S., Mierle, K., et al.: Ceres solver. http://ceres-solver.org

  2. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  3. Clipp, B., Kim, J.H., Frahm, J.M., Pollefeys, M., Hartley, R.: Robust 6DOF motion estimation for non-overlapping, multi-camera systems. In: Proceedings of the IEEE Workshop on Applications of Computer Vision, Washington, DC, USA, pp. 1–8 (2008)

    Google Scholar 

  4. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi:10.1007/978-3-319-10605-2_54

    Google Scholar 

  5. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

  6. Hartley, R., Trumpf, J., Yuchao, D., Li, H.: Rotation averaging. Int. J. Comput. Vis. (IJCV) 103(3), 267–305 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  8. Horaud, R., Dornaika, F.: Hand-eye calibration. Int. J. Robot. Res. (IJRR) 14(3), 195–210 (1995)

    Article  Google Scholar 

  9. Kazik, T., Kneip, L., Nikolic, J., Pollefeys, M., Siegwart, R.: Real-time 6D stereo visual odometry with non-overlapping fields of view. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, USA (2012)

    Google Scholar 

  10. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR), Nara, Japan (2007)

    Google Scholar 

  11. Kneip, L., Furgale, P.: OpenGV: a unified and generalized approach to real-time calibrated geometric vision. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Hongkong (2014)

    Google Scholar 

  12. Kneip, L., Furgale, P., Siegwart, R.: Using multi-camera systems in robotics: efficient solutions to the NPnP problem. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany (2013)

    Google Scholar 

  13. Kneip, L., Li, H.: Efficient computation of relative pose for multi-camera systems. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, USA (2014)

    Google Scholar 

  14. Kneip, L., Li, H., Seo, Y.: UPnP: an optimal O(n) solution to the absolute pose problem with universal applicability. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 127–142. Springer, Cham (2014). doi:10.1007/978-3-319-10590-1_9

    Google Scholar 

  15. Kneip, L., Lynen, S.: Direct optimization of frame-to-frame rotation. In: Proceedings of the International Conference on Computer Vision (ICCV), Sydney, Australia (2013)

    Google Scholar 

  16. Kneip, L., Scaramuzza, D., Siegwart, R.: A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, USA (2011)

    Google Scholar 

  17. Konolige, K., Agrawal, M., Solà, J.: Large scale visual odometry for rough terrain. In: Proceedings of the International Symposium on Robotics Research (ISRR), Hiroshima, Japan (2007)

    Google Scholar 

  18. Li, H., Hartley, R., Kim, J.H.: A linear approach to motion estimation using generalized camera models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, USA, pp. 1–8 (2008)

    Google Scholar 

  19. Mur-Artal, R., Montiel, J.M.M., Tardós, J.D.: ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot. (T-RO) 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  20. Newcombe, R., Lovegrove, S., Davison, A.: DTAM: dense tracking and mapping in real-time. In: Proceedings of the International Conference on Computer Vision (ICCV), Barcelona, Spain (2011)

    Google Scholar 

  21. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: real-time dense surface mapping and tracking. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR) (2011)

    Google Scholar 

  22. Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, pp. 652–659 (2004)

    Google Scholar 

  23. Nistér, D., Stewénius, H.: A minimal solution to the generalized 3-point pose problem. J. Math. Imaging Vis. (JMIV) 27(1), 67–79 (2006)

    Article  Google Scholar 

  24. Pless, R.: Using many cameras as one. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Madison, WI, USA, pp. 587–593 (2003)

    Google Scholar 

  25. Steinbrücker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (2011)

    Google Scholar 

  26. Stewénius, H., Engels, C., Nistér, D.: Recent developments on direct relative orientation. ISPRS J. Photogramm. Remote Sens. 60(4), 284–294 (2006)

    Article  Google Scholar 

  27. Stewénius, H., Nistér, D.: Solutions to minimal generalized relative pose problems. In: Workshop on Omnidirectional Vision (ICCV), Beijing, China (2005)

    Google Scholar 

  28. Strasdat, H., Davison, A.: Scale drift-aware large scale monocular SLAM. In: Proceedings of Robotics: Science and Systems (RSS), Zaragoza, Spain (2010)

    Google Scholar 

  29. Tykkälä, T., Audras, C., Comport, A.I.: Direct iterative closest point for real-time visual odometry. In: IEEE International Conference on Computer Vision Workshops (ICCV Workshops) (2011)

    Google Scholar 

  30. Whelan, T., Johannsson, H., Kaess, M., Leonard, J.J., McDonald, J.: Robust real-time visual odometry for dense RGB-D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifu Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Y., Kneip, L. (2017). On Scale Initialization in Non-overlapping Multi-perspective Visual Odometry. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics