Towards a Cloud Robotics Platform for Distributed Visual SLAM

  • Peng Yun
  • Jianhao Jiao
  • Ming LiuEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10528)


Cloud computing allows robots to offload computation and share information as well as skills. Visual SLAM is one of the intensively computational tasks for mobile robots. It can benefit from the cloud. In this paper, we propose a novel cloud robotics platform named RSE-PF for distributed visual SLAM with close attention to the infrastructure of the cloud. We implement it with Amazon Web Services and OpenResty. We demonstrate the feasibility, robustness, and elasticity of the proposed platform with a use case of perspective-n-point solution. In this use case, the average round-trip delay is 153 ms, which meets the near real-time requirement of mobile robots.


Cloud robotics Mobile robots Visual SLAM Perspective-n-point 


  1. 1.
    Liu, M.: Robotic online path planning on point cloud. IEEE Trans. Cybern. 46(5), 1217–1228 (2016)CrossRefGoogle Scholar
  2. 2.
    Gianni, M., Papadakis, P., Pirri, F., Liu, M., Pomerleau, F., Colas, F., Zimmermann, K., Svoboda, T., Petricek, T., Kruijff, G.J.M.: A unified framework for planning and execution-monitoring of mobile robots. In: AAAI Conference on Automated Action Planning for Autonomous Mobile Robots, pp. 39–44 (2011)Google Scholar
  3. 3.
    Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)CrossRefGoogle Scholar
  4. 4.
    Arumugam, R., Enti, V.R., Bingbing, L., Xiaojun, W., Baskaran, K., Kong, F.F., Kumar, A.S., Meng, K.D., Kit, G.W.: DAvinCi: a cloud computing framework for service robots. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 3084–3089. IEEE (2010)Google Scholar
  5. 5.
    Hunziker, D., Gajamohan, M., Waibel, M., D’Andrea, R.: Rapyuta: the roboearth cloud engine. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 438–444. IEEE (2013)Google Scholar
  6. 6.
    Waibel, M., Beetz, M., Civera, J., d’Andrea, R., Elfring, J., Galvez-Lopez, D., Häussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., et al.: Roboearth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011)CrossRefGoogle Scholar
  7. 7.
    Mohanarajah, G., Usenko, V., Singh, M., D’Andrea, R., Waibel, M.: Cloud-based collaborative 3D mapping in real-time with low-cost robots. IEEE Trans. Autom. Sci. Eng. 12(2), 423–431 (2015)CrossRefGoogle Scholar
  8. 8.
    Beksi, W.J., Spruth, J., Papanikolopoulos, N.: CORE: a cloud-based object recognition engine for robotics. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4512–4517. IEEE (2015)Google Scholar
  9. 9.
    Wang, L., Liu, M., Meng, M.Q.-H.: A hierarchical auction-based mechanism for real-time resource allocation in cloud robotic systems. IEEE Trans. Cybern. 47(2), 473–484 (2017)Google Scholar
  10. 10.
    Rahman, A., Jin, J., Cricenti, A., Rahman, A., Yuan, D.: A cloud robotics framework of optimal task offloading for smart city applications. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2016)Google Scholar
  11. 11.
    Mell, P., Grance, T., et al.: The NIST Definition of Cloud Computing (2011)Google Scholar
  12. 12.
    Lubbers, P., Albers, B., Salim, F., Pye, T.: Pro HTML5 Programming. Springer, Heidelberg (2011). doi: 10.1007/978-1-4302-3865-2 CrossRefGoogle Scholar
  13. 13.
    Gao, X.-S., Hou, X.-R., Tang, J., Cheng, H.-F.: Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 930–943 (2003)CrossRefGoogle Scholar
  14. 14.
    Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33715-4_54 CrossRefGoogle Scholar
  15. 15.
    Sun, Y., Liu, M., Meng, Q.H.: WiFi signal strength-based robot indoor localization. In: IEEE International Conference on Information and Automation, pp. 250–256 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science EngineeringHKUSTKowloonHong Kong
  2. 2.Department of Electronic and Computer EngineeringHKUSTKowloonHong Kong

Personalised recommendations