Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 680))

Abstract

We present the design of a mobile system for real-time stress-level assessment. The system combines wearable sensors, wireless data acquisition, and Cloud computing in order to collect and analyze physiological signals, such as, Galvanic Skin Response (GSR) and skin temperature. We report on the implementation of a specific use case, which incorporates functionality for real-time data logging and analysis. Experimental results demonstrate excellent recognition accuracy of affective arousal and decent accuracy for binary detection of valence. In addition, we also evaluate the feasibility for detection of high arousal/negative valence (HANV) events, which in specific setups can be connected to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015). doi:10.1109/ACCESS.2015.2437951

    Article  Google Scholar 

  2. Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S., Alelaiwi, A., Hossain, M.: A survey on sensor-cloud: architecture, applications, and approaches. Int. J. Distrib. Sens. Netw. 9(2), 917923 (2013)

    Article  Google Scholar 

  3. Mozos, O.M., Sandulescu, V., Andrews, S., Ellis, D., Bellotto, N., Dobrescu, R., Ferrandez, J.M.: Stress detection using wearable physiological and sociometric sensors. Int. J. Neural Syst. 0, 1–17 (2005)

    Google Scholar 

  4. Fletcher, R.R., Dobson, K., Wilder-Smith, O., Goodwin, M., et al.: iCalm: wearable sensor and network architecture for wirelessly communicating and logging autonomic activity. IEEE Trans. Inf. Technol. Biomed. 14(2), 215–223 (2010). doi:10.1109/TITB.2009.2038692

    Article  Google Scholar 

  5. Valenza, G., Allegrini, P., Lanatà, A., Scilingo, E.P.: Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Frontiers Neuroeng. 5(3), 7 (2012)

    Google Scholar 

  6. Acharya, U.R., Joseph, K.P., Kannathal, N., Lim, C.M., Suri, J.S.: Heart rate variability: a review. Med. Biol. Eng. Comput. 44(12), 1031–1051 (2006)

    Article  Google Scholar 

  7. Lanatà, A., et al.: How the autonomic nervous system and driving style change with incremental stressing conditions during simulated driving. IEEE Trans. Intell. Transp. Syst. 16(3), 1505–1517 (2015). doi:10.1109/TITS.2014.2365681

    Article  Google Scholar 

  8. Sano, A., Picard, R.W.: Stress recognition using wearable sensors and mobile phones. In: 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, Geneva, pp. 671–676 (2013). doi:10.1109/ACII.2013.117

  9. Garcia-Ceja, E., Osmani, V., Mayora, O.: Automatic stress detection in working environments from smartphones’ accelerometer data: a first step. IEEE J. Biomed. Health Inform. 20(4), 1053–1060 (2016). doi:10.1109/ICDMW.2011.17

    Article  Google Scholar 

  10. Bakker, J., Pechenizkiy, M., Sidorova, N.: What’s your current stress level? detection of stress patterns from gsr sensor data. In: 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, pp. 573–580 (2011). doi:10.1109/ICDMW.2011.17

  11. Wijsman, J., Grundlehner, B., Liu, H., Hermens, H., Penders, J.: Towards mental stress detection using wearable physiological sensors. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, pp. 1798–1801 (2011). doi:10.1109/IEMBS.2011.6090512

  12. Liao, W., Zhang, W., Zhu, Z., Ji, Q.: A real-time human stress monitoring system using dynamic bayesian network. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Workshops, San Diego, CA, USA, p. 70 (2005). doi:10.1109/CVPR.2005.394

Download references

Acknowledgement

The authors acknowledge with sincere thanks the support received through the research project NP5/2017 entitled “Study of Methods and Apparatus for the Acquisition of Biomedical Data in Mobile Setup”, financed by the National Science Fund of Bulgaria and Technical University of Varna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Markova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Markova, V., Kalinkov, K., Stanev, P., Ganchev, T. (2018). Automated Stress Level Monitoring in Mobile Setup. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds) Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’17). IITI 2017. Advances in Intelligent Systems and Computing, vol 680. Springer, Cham. https://doi.org/10.1007/978-3-319-68324-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68324-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68323-2

  • Online ISBN: 978-3-319-68324-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics