Mapping the Value of National Forest Landscapes for Ecosystem Service Provision

  • Emma C. Underwood
  • Allan D. Hollander
  • Patrick R. Huber
  • Charlie Schrader-Patton
Part of the Springer Series on Environmental Management book series (SSEM)


Natural landscapes provide ecosystem services that are critical to human health and society. However, as landscapes are threatened by urban development, climate change, intensive agriculture, and altered fire regimes, this negatively affects the condition of natural ecosystems and reduces the provision of these services for which there may not be viable alternatives. We report on a project to map the value of national forest lands in southern California for ecosystem service provision. Our focus is on quantifying five types of ecosystem services, water runoff, groundwater recharge, sediment erosion retention, carbon storage, and biodiversity, across an area that encompasses the four southern national forests—the Angeles, Los Padres, San Bernardino, and Cleveland. We first develop environmentally and climatically driven ecological units as a practical way to summarize information on services for resource managers. Second, we map the spatial distribution of the five services under current climate conditions and assess the spatial concordance between the five services. Third, using a conceptually straightforward approach, we prioritize the ecological units that provide the highest amount of each service and identify hotspots of ecosystem services where ecological units contain multiple services. By providing results to resource managers and the means to access and query the data, information can be used to guide decision making (e.g., prioritizing areas for conservation and restoration activities), assess the impacts of proposed activities (e.g., the impact of fuel management on ecosystem service provision), provide estimates of the value of chaparral shrublands for fire damage assessments, and help secure the long-term provision of ecosystem services across the landscape. The maps and data generated in this project provide the foundation for the next step that is calculating the economic value of these services.


Biodiversity Carbon storage Groundwater recharge Hotspots Landsat EVI Sediment erosion retention Water runoff 


  1. Anderson, B. J., P. R. Armsworth, F. Eigenbrod, C. D. Thomas, S. Gillings, A. Heinemeyer, D. B. Roy, and K. J. Gaston. 2009. Spatial covariance between biodiversity and other ecosystem service priorities. Journal of Applied Ecology 46:888-896.CrossRefGoogle Scholar
  2. Ball, I. R., H. P. Possingham, and M. Watts. 2009. Marxan and relatives: software for spatial conservation prioritisation. Pages 185-195 in A. Moilanen, K. A. Wilson, and H. P. Possingham, editors. Spatial conservation prioritisation: quantitative methods and computational tools. Oxford University Press, Oxford, UK.
  3. Barten, P. K., and C. Ernst. 2004. Land conservation and watershed management for source protection. Journal of the American Water Works Association 96:121-135.CrossRefGoogle Scholar
  4. Batker, D. K. 2005. Supplemental ecological services study: Tolt River watershed asset management plan. Report for Earth Economics, Seattle, Washington, USA.Google Scholar
  5. Batllori, E., M. A. Parisien, M. A. Krawchuk, and M. A. Moritz. 2013. Climate change-induced shifts in fire for Mediterranean ecosystems. Global Ecology and Biogeography 22:1118-1129.CrossRefGoogle Scholar
  6. Benayas, J. M. R., A. C. Newton, A. Diaz, and J. M. Bullock. 2009. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis. Science 325:1121-1124.Google Scholar
  7. Bullock, J. M., J. Aronson, A. C. Newton, R. F. Pywell, and J. M. R. Benayas. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends in Ecology and Evolution 26:541-549.CrossRefGoogle Scholar
  8. Burge, D. O., J. H. Thorne, S. P. Harrison, B. C. O'Brien, J. P. Rebman, J. R. Shevock, E. R. Alverson, L. K. Hardison, J. Delgadillo Rodríguez, S. A. Junak, T. A. Oberbauer, H. Riemann, S. E. Vanderplank, and T. Barry. 2016. Plant diversity and endemism in the California Floristic Province. Madroño 63:3-206.CrossRefGoogle Scholar
  9. Chan, K. M. A., M. R. Shaw, D. R. Cameron, E. C. Underwood, and G. C. Daily. 2006. Conservation planning for ecosystem services. PLoS Biology 4:379.CrossRefGoogle Scholar
  10. Clark, J., M. Stamer, K. Cooper, C. Napper, T. S. Hogue, and A. M. Kinoshita. 2013. Using remote sensing to monitor post-fire watershed recovery as a tool for management. Pages 370-375 in G. J. Gottfried, P. Folliott, B. S. Gebow, L. G. Eskew, and L. C. Collins, editors. Merging science and management in a rapidly changing world: biodiversity and management of the Madrean Archipelago III. Proceedings RMRS-P-67. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.Google Scholar
  11. Costanza, R., R. D’Arge, R. de Groots, S. Farber, M. Grasso, B. Hannon, K. Limbrug, R. V. O'Neill, J. Paruelo, R. G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387:253-260.CrossRefGoogle Scholar
  12. Cullum, C., K. H. Rogers, G. Brierley, and E. T. F. Witkowski. 2016. Ecological classification and mapping for landscape management and science. Progress in Physical Geography 40:38-65.CrossRefGoogle Scholar
  13. Daily, G. C. 1997. Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, D.C., USA.Google Scholar
  14. DeBano, L. F. 1981. Water repellent soils: a state-of-the-art. General Technical Report PSW-GTR-46. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA.Google Scholar
  15. Egoh, B., B. Reyers, M. Rouget, D. M. Richardson, D. C. Le Maitre, and A. S. van Jaarsveld. 2008. Mapping ecosystem services for planning and management. Agriculture Ecosystems and Environment 127:135-140.CrossRefGoogle Scholar
  16. Eklundh, L., and P. Jönsson. 2015. TIMESAT 3.2 software manual. Lund and Malmö University, Lund, Sweden.
  17. Flannigan, M. D., B. J. Stocks, and B. M. Wotton. 2000. Climate change and forest fires. Science of the Total Environment 262:221-229.CrossRefGoogle Scholar
  18. Flint, L. E., A. L. Flint, J. H. Thorne, and R. Boynton. 2013. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes 2:25.CrossRefGoogle Scholar
  19. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309:570-574.CrossRefGoogle Scholar
  20. FRAP [Fire and Resource Assessment Program]. 2015. California Department of Forestry and Fire Protection’s CALFIRE Fire and Resource Assessment Program (FRAP). Fveg15_1 vegetation data.
  21. Gallegos, A., F. Levitan, C. Phillips, and B. Roath. 2001. Southern California Province land type association ecological unit inventory. Unpublished report prepared for the USDA Forest Service for the Los Padres, Angeles, San Bernardino, and Cleveland national forests.Google Scholar
  22. Gold, M., S. Pincetl, and F. Federico. 2015. Environmental report card for Los Angeles County. UCLA Institute of the Environment and Sustainability, Los Angeles, California, USA.
  23. Gos, P., and S. Lavorel. 2012. Stakeholders’ expectations on ecosystem services affect the assessment of ecosystem services hotspots and their congruence with biodiversity. International Journal of Biodiversity Science Ecosystem Services Management 18:93-106.CrossRefGoogle Scholar
  24. Gower, J. C. 1971. A general coefficient of similarity and some of its properties. Biometrics 27:623-637.CrossRefGoogle Scholar
  25. Haidinger, T. L., and J. E. Keeley. 1993. Role of high fire frequency in destruction of mixed chaparral. Madroño 40:141-147.Google Scholar
  26. Hamel, P., R. Chaplin-Kramer, S. Sim, and C. Mueller. 2015. A new approach to modeling the sediment retention service (InVEST 3.0): case study of the Cape Fear catchment, North Carolina, USA. Science of the Total Environment 524-525:166-177.CrossRefGoogle Scholar
  27. Hastie, T., R. Tibshirani, and J. Friedman. 2009. The elements of statistical learning: data mining, inference, and prediction. Springer, Berlin, Germany.CrossRefGoogle Scholar
  28. Hayhoe, K., D. Cayan, C. B. Field, P. C. Frumhoff, E. P. Maurer, N. L. Miller, S. C. Moser, S. H. Schneider, K. N. Cahill, E. E. Cleland, L. Dale, R. Drapek, R. M. Hanemann, L. S. Kalkstein, J. Lenihan, C. K. Lunch, R. P. Neilson, S. C. Sheridan, and J. H. Verville. 2004. Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences 101:12422-12427.CrossRefGoogle Scholar
  29. Hollander, A. D. 2012. Using GRASS and R for Landscape Regionalization through PAM Cluster Analysis. OSGeo Journal 10:6.Google Scholar
  30. Huber, P. R., S. E. Greco, and J. H. Thorne. 2010. Spatial scale effects on conservation network design: trade-offs and omissions in regional versus local scale planning. Landscape Ecology 25:683-695.CrossRefGoogle Scholar
  31. Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83:195-213.CrossRefGoogle Scholar
  32. Huete, A. R., H. Q. Liu, K. Batchily, and W. Van Leeuwen. 1997. A comparison of vegetation indices over a global set of TM image for EOS-MODIS. Remote Sensing of Environment 59:440-451.CrossRefGoogle Scholar
  33. Jack, B. K., C. Kousky, and K. R. E. Sims. 2008. Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms. Proceedings of the National Academy of Sciences 105:9465-9470.CrossRefGoogle Scholar
  34. Jasiewicz, J., and T. F. Stepinski. 2013. Geomorphons - a pattern recognition approach to classification and mapping of landforms. Geomorphology 182:147-156.CrossRefGoogle Scholar
  35. Jönsson, P., and L. Eklundh. 2004. TIMESAT – a program for analyzing time-series of satellite sensor data. Computer and Geosciences 30:833-845.CrossRefGoogle Scholar
  36. Kaufman, L., and P. Rousseeuw. 2005. Finding groups in data: an introduction to cluster analysis. Wiley, Hoboken, New Jersey, USA.Google Scholar
  37. Keeley, J. E. 2005. Fire as a threat to biodiversity in fire-type shrublands. Pages 97-106 in B. E. Kus, and J. L. Beyers, technical coordinators. Planning for biodiversity: bringing research and management together. General Technical Report PSW-GTR-195. USDA Forest Service, Pacific Southwest Research Station, Albany, California, USA.Google Scholar
  38. Kinoshita, A. M., and T. S. Hogue. 2011. Spatial and temporal controls on post-fire hydrologic recovery in Southern California watersheds. Catena 87:240-252.CrossRefGoogle Scholar
  39. Kummerow, J., D. Krause, and W. Jow. 1977. Root systems of chaparral shrubs. Oecologia 29:163-177.CrossRefGoogle Scholar
  40. Lenihan, J. M., D. Bachelet, R. P. Neilson, and R. Drapek. 2008. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Climate Change 87:S215-S230.CrossRefGoogle Scholar
  41. Liaw, A., and M. Wiener. 2002. Classification and regression by random forest. R News 2:18-22.Google Scholar
  42. Liu, H. Q., and A. R. Huete. 1995. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing 33:457-465.CrossRefGoogle Scholar
  43. Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. 2017. Cluster: cluster analysis basics and extensions. R package version 2.0.6.Google Scholar
  44. McMahon, G., E. B. Wiken, and D. A. Gauthier. 2004. Toward a scientifically rigorous basis developing mapped ecological regions. Environmental Management 34:S111–24.CrossRefGoogle Scholar
  45. Millennium Ecosystem Assessment. 2005. Millennium ecosystem assessment synthesis report. Island Press, Washington, D.C., USA.Google Scholar
  46. Naidoo, R., A. Balmford, R. Costanza, B. Fisher, R. E. Green, B. Lehner, T. R. Malcolm, and T. H. Ricketts. 2008. Global mapping of ecosystem services and conservation priorities. Proceedings of the National Academy of Sciences 105:9495-9500.CrossRefGoogle Scholar
  47. Nelson, E., G. Mendoza, J. Regetz, S. Polasky, H. Tallis, D. Cameron, K. M. A. Chan, G. C. Daily, J. Goldstein, P. M. Kareiva, E. Lonsdorf, R. Naidoo, T. H. Ricketts, and M. R. Shaw. 2009. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Frontiers in Ecology and the Environment 7:4-11.CrossRefGoogle Scholar
  48. Oechel, W. C., S. J. Hastings, G. L. Vourlitis, M. A. Jenkins, and C. L. Hinkson. 1995. Direct Effects of Elevated CO2 in chaparral and Mediterranean-type ecosystems. Pages 58-75 in J. M. Moreno and W. C. Oechel, editors. Global change and Mediterranean-type ecosystems. Springer, New York, New York, USA.CrossRefGoogle Scholar
  49. Olson, D. M., and E. Dinerstein. 2002. The Global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden 89:199-224.CrossRefGoogle Scholar
  50. Perović, V., L. Životić, R. Kadović, A. Dorđević, D. Jaramaz, V. Mrvić, and M. Todorović. 2013. Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environmental Earth Sciences 68:115-128.CrossRefGoogle Scholar
  51. Polasky S., Nelson E., Pennington D., and Johnson K. A. 2011. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environmental Resource Economics 48:219-242.CrossRefGoogle Scholar
  52. Raudsepp-Hearne, C., G. D. Peterson, and E. M. Bennett. 2010. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proceedings of the National Academy of Sciences 107:5242-5247CrossRefGoogle Scholar
  53. Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder. 1997. Predicting soil erosion by water: a guide to conservation planning with the revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook No. 703. USDA Agricultural Research Service, Washington D.C., USA.Google Scholar
  54. Rice, R. M. 1974. The hydrology of chaparral watersheds. Pages 19-26 in M. Rosenthal, editor. Proceedings of the Symposium on Living with the Chaparral, Riverside, California, March 30-31, 1973. Sierra Club Special Publication, San Francisco, California, USA.Google Scholar
  55. Rouse, J. W., R. H. Haas, J. A. Scheel, and D. W. Deering. 1974. Monitoring vegetation systems in the Great Plains with ERTS. Pages 309-317 in S. C. Freden, E. P. Mercanti, and M. A. Becker, editors. Proceedings, third Earth Resource Technology Satellite (ERTS) symposium, volume 1, Washington, D.C., December 10-14, 1973. NASA, Washington, D.C., USA.Google Scholar
  56. Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 20:53-65.CrossRefGoogle Scholar
  57. Sachs, J. D., and W. V. Reid. 2006. Environment: investments toward sustainable development. Science 312:1002.CrossRefGoogle Scholar
  58. Safford, H. D. 2007. Man and fire in southern California: doing the math. Fremontia 35:25-29.Google Scholar
  59. Schlesinger, W. H. 1997. Biogeochemistry: an analysis of global change. Academic Press, San Diego, California, USA.Google Scholar
  60. Schroter, M., and R. P. Remme. 2016. Spatial prioritisation for conserving ecosystem services: comparing hotspots with heuristic optimisation. Landscape Ecology 31:431-450.CrossRefGoogle Scholar
  61. Scott, K. M., and R. P. Williams. 1978. Erosion and sediment yields in the Transverse Ranges, southern California USA. USGS Professional Paper 1030. US Geological Survey, Washington D.C., USA.Google Scholar
  62. Shaw, M. R., L. Pendleton, D. R. Cameron, B. Morris, D. Bachelet, K. Klausmeyer, J. MacKenzie, D. R. Conklin, G. N. Bratman, J. Lenihan, E. Haunreiter, C. Daly, and P. R. Roehrdanz. 2011. The impact of climate change on California’s ecosystem services. Climatic Change 109:S465-S484.CrossRefGoogle Scholar
  63. Smith, N., R. Deal, J. D. Kline, D. Blahna, T. Patterson, T. A. Spies, and K. Bennett. 2011. Ecosystem services as a framework for forest stewardship: Deschutes National Forest overview. General Technical Report PNW-GTR-852. USDA Forest Service, Pacific Northwest Research Station. Portland, Oregon, USA.Google Scholar
  64. Smith, R. J., J. Easton, B. A. Nhancale, A. J. Armstrong, J. Culverwell, S. D. Dlamini, P. S. Goodman, L. Loffler, W. S. Matthews, A. Monadjem, C. M. Mulqueeny, P. Ngwenya, C. P. Ntumi, S. Soto, and N. Leader-Williams. 2008. Designing a transfrontier conservation landscape for the Maputaland centre of endemism using biodiversity, economic and threat data. Biological Conservation 141:2127-2138.CrossRefGoogle Scholar
  65. Spencer, W. D., P. Beier, K. Penrod, K. Winters, C. Paulman, H. Rustigian-Romsos, J. Strittholt, M. Parisi, and A. Pettler. 2010. California essential habitat connectivity project: a strategy for conserving a connected California. Prepared for California Department of Transportation, California Department of Fish and Game, and Federal Highways Administration,
  66. Stephenson, N. 1998. Actual evapotranspiration and deficit: biologically meaningful correlates of vegetation distribution across spatial scales. Journal of Biogeography 25:855-870.CrossRefGoogle Scholar
  67. Tallis, H. T., T. H. Ricketts, D. Ennaanay, E. Nelson, K. Vigerstol, G. Mendoza, and D. Cameron. 2014. InVEST 2.5.6 beta User’s Guide. The Natural Capital Project.
  68. USDA [US Department of Agriculture]. 2004. Southern California National Forests land management plan. US Department of Agriculture, Forest Service, Vallejo, California, USA.
  69. van der Knijff, J. M., R. J. A. Jones, and L. Montanarella. 2000. Soil erosion risk assessment in Europe. EUR 19044 EN. European Commission Directorate General. Joint Research Centre, Space Applications Institute, European Soil Bureau, Ispra, Italy.Google Scholar
  70. Westerling, A. L., and B. Bryant. 2006. Climate change and wildfire in and around California: fire modeling and loss modeling. CEC-500-2006-190-SF. Report from the California Climate Change Center to the California Energy Commission.
  71. Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313:940-943.CrossRefGoogle Scholar
  72. Wittenberg, L., D. Malkinson, O. Beeric, A. Halutzya, and N. Teslera. 2007. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. Catena 71:76-83.CrossRefGoogle Scholar
  73. Wohlgemuth, P. M., J. L. Beyers, and S. G. Conard. 1999. Postfire hillslope erosion in southern California chaparral: a case study of prescribed fire as a sediment management tool. General Technical Report PSW-GTR-173. USDA Forest Service, Pacific Southwest Research Station, Albany, California, USA.Google Scholar
  74. Wohlgemuth, P. M., K. R. Hubbert, J. L. Beyers, and M. G. Narog. 2009. Post-fire watershed response at the Wildland/Urban Interface, southern California. Pages 137-142 in R. M. T. Webb, and D. J. Semmens, editors. Planning for an uncertain future - monitoring, integration, and adaptation. Proceedings of the Third Interagency Conference on Research in the Watersheds, Estes Park, Colorado, September 8-11, 2008. USGS Scientific Investigations Report 2009-5049. US Geological Survey, Reston, Virginia, USA.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emma C. Underwood
    • 2
    • 1
  • Allan D. Hollander
    • 2
  • Patrick R. Huber
    • 2
  • Charlie Schrader-Patton
    • 3
  1. 1.University of CaliforniaDavisUSA
  2. 2.University of SouthamptonSouthamptonUK
  3. 3.RedCastle Resources, Inc. and USDA Forest ServiceWestern Wildland Environmental Threat Assessment CenterPinevilleUSA

Personalised recommendations