Biogeochemical Cycling of Carbon and Nitrogen in Chaparral Dominated Ecosystems

  • G. Darrel Jenerette
  • Isaac W. Park
  • Holly M. Andrews
  • Jennifer R. Eberwein
Part of the Springer Series on Environmental Management book series (SSEM)


The controls and trajectories of biogeochemical dynamics in chaparral dominated ecosystems are highly diverse. This breadth of diversity in chaparral biogeochemical dynamics is caused by a combination of diverse biogeophysical drivers, self-organization, and sensitivity to historical legacies. The high topographic heterogeneity and decoupling of moisture inputs and energy inputs in the winter precipitation dominated climates imposes unique ecohydrologic adaptations that influence plant and microbial metabolic activities and distributions throughout chaparral landscapes. Chaparral biogeochemical dynamics, especially interactions among carbon, nitrogen, and hydrologic cycling, may have important implications for the ecosystem services and disservices provided by these ecosystems, including greenhouse gas emissions and pollutants to air and water, and influence the vulnerability of chaparral biological communities to global change drivers. These ecosystems may have a large capacity for carbon storage and sustained carbon sequestration at rates comparable with those of old-growth forests. In other places, chaparral ecosystems may have low pools of carbon and low rates of sequestration. While commonly considered nitrogen limited, chaparral dominated ecosystems may also have large nitrogen emissions through atmospheric and hydrologic pathways. Future trajectories of chaparral biogeochemical dynamics are also variable. Unprecedented interactions among global change drivers, including climate, nitrogen deposition, fire frequency, and invasion risks, are pushing many of these systems to tipping points of reorganization and type-conversion to grass dominated states with uncertain biogeochemical consequences. Management for maintaining ecosystem services associated with biogeochemical dynamics can be improved with growing opportunities provided by a suite of environmental sensors and next generation modeling approaches.


Biodiversity Biogeochemistry Carbon Ecosystem Global change Invasion Nitrogen Tipping point 


  1. Ackerly, D. 2004. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecological Monographs 74:25-44.CrossRefGoogle Scholar
  2. Allen, M. F., and K. Kitajima. 2013. In situ high-frequency observations of mycorrhizas. New Phytologist 200:222-228.CrossRefGoogle Scholar
  3. Allen, M. F., J. N. Klironomos, K. K. Treseder, and W. C. Oechel. 2005a. Responses of soil biota to elevated CO2 in a chaparral ecosystem. Ecological Applications 15:1701-1711.CrossRefGoogle Scholar
  4. Allen, E. B., A. G. Sirulnik, L. Egerton-Warburton, S. N. Kee, A. Bytnerowicz, P. E. Padgett, P. J. Temple, M. E. Fenn, M. A. Poth, and T. Meixner. 2005b. Air pollution and vegetation change in southern California coastal sage scrub: a comparison with chaparral and coniferous forest. Pages 79-95 in B. E. Kus and J. L. Beyers, editors. Planning for biodiversity: bringing research and management together. General Technical Report PSW-GTR-195. Pacific Southwest Research Station, USDA Forest Service, Albany, California, USA.Google Scholar
  5. Amundson, R., D. D. Richter, G. S. Humphreys, E. G. Jobbagy, and J. Gaillardet. 2007. Coupling between biota and earth materials in the Critical Zone. Elements 3:327-332.CrossRefGoogle Scholar
  6. Anderson, H. W., M. D. Hoover, and K. G. Reinhart. 1976. Forests and water: effects of forest management on floods, sedimentation, and water supply. General Technical Report GTR-PSW-018. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA.Google Scholar
  7. Ashby, W. R. 1956. An introduction to cybernetics. Chapman and Hall Ltd., New York, New York, USA.CrossRefGoogle Scholar
  8. Austin, A. T., and L. Vivanco. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555-558.CrossRefGoogle Scholar
  9. Bailey, R. G. 2004. Identifying ecoregion boundaries. Environmental Management 34:S14-S26.CrossRefGoogle Scholar
  10. Baldocchi, D., J. W. Tang, and L. K. Xu. 2006. How switches and lags in biophysical regulators affect spatial-temporal variation of soil respiration in an oak-grass savanna. Journal of Geophysical Research: Biogeosciences 111:G02008.CrossRefGoogle Scholar
  11. Baldocchi, D. D., and L. K. Xu. 2007. What limits evaporation from Mediterranean oak woodlands—the supply of moisture in the soil, physiological control by plants, or the demand by the atmosphere? Advances in Water Resources 30:2113-2122.CrossRefGoogle Scholar
  12. Bell, D. T. 2001. Ecological response syndromes in the flora of southwestern Western Australia: fire resprouters versus reseeders. Botanical Review 67:417-440.CrossRefGoogle Scholar
  13. Bentley, J. R. 1967. Conversion of chaparral areas to grassland: techniques used in California. USDA Agriculture Handbook number 328. USDA, Washington D.C., USA.Google Scholar
  14. Biederman, J. A., R. L. Scott, M. L. Goulden, R. Vargas, M. E. Litvak, T. E. Kolb, E. A. Yepez, W. C. Oechel, P. D. Blanken, T. W. Bell, J. Garatuza-Payan, G. E. Maurer, S. Dore, and S. P. Burns. 2016. Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Global Change Biology 22:1867-1879.CrossRefGoogle Scholar
  15. Biudes, M. S. and G. L. Vourlitis. 2012. Carbon and nitrogen mineralization of a semiarid shrubland exposed to experimental nitrogen deposition. Soil Science Society of America Journal 76:2068-2073.CrossRefGoogle Scholar
  16. Brejda, J. T. 1997. Soil changes following 18 years of protection from grazing in Arizona chaparral. Southwestern Association of Naturalists 42:478-487.Google Scholar
  17. Burns, C., and J. Sauer. 1992. Resistance by natural vegetation in the San Gabriel Mountains of California to invasion by introduced conifers. Global Ecology and Biogeography Letters 2:46-51.CrossRefGoogle Scholar
  18. Bytnerowicz, A., R. F. Johnson, L. Zhang, G. D. Jenerette, M. E. Fenn, S. L. Schilling, and I. Gonzalez-Fernandez. 2015. An empirical inferential method of estimating nitrogen deposition to Mediterranean-type ecosystems: the San Bernardino Mountains case study. Environmental Pollution 203:69-88.CrossRefGoogle Scholar
  19. Bytnerowicz, A., P. R. Miller, D. M. Olszyk, P. J. Dawson, and C. A. Fox. 1987. Gaseous and particulate air-pollution in the San Gabriel Mountains of southern California. Atmospheric Environment 21:1805-1814.CrossRefGoogle Scholar
  20. Cable, D. R. 1975. Range management in the chaparral type and its ecological basis: the status of our knowledge. Research Paper RM-155. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, USA.Google Scholar
  21. Chapin, F. S., P. A. Matson, and H. A. Mooney. 2012. Principles of terrestrial ecosystem ecology. Springer, New York, New York, USA.Google Scholar
  22. Chatterjee, A., and G. D. Jenerette. 2011. Spatial variability of soil metabolic rate along a dryland elevation gradient. Landscape Ecology 26:1111-1123.CrossRefGoogle Scholar
  23. Chatterjee, A., and G. D. Jenerette. 2015. Variation in soil organic matter accumulation and metabolic activity along an elevation gradient in the Santa Rosa Mountains of Southern California, USA. Journal of Arid Land 7:814-819.CrossRefGoogle Scholar
  24. Chorover, J., P. A. Troch, C. Rasmussen, P. D. Brooks, J. D. Pelletier, D. D. Breshears, T. E. Huxman, S. A. Kurc, K. A. Lohse, J. C. McIntosh, T. Meixner, M. G. Schaap, M. E. Litvak, J. Perdrial, A. Harpold, and M. Durcik. 2011. How water, carbon, and energy drive Critical Zone evolution: the Jemez-Santa Catalina Critical Zone Observatory. Vadose Zone Journal 10:884-899.CrossRefGoogle Scholar
  25. Christensen, N. L. 1973. Fire and the nitrogen cycle in California chaparral. Science 181:66-67.CrossRefGoogle Scholar
  26. Corbett, E. S., and R. P. Crouse. 1968. Rainfall intrception by annual grass and chaparral: losses compared. PSW-RP-48. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA.Google Scholar
  27. Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T. Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Perez-Harguindeguy, H. M. Quested, L. S. Santiago, D. A. Wardle, I. J. Wright, R. Aerts, S. D. Allison, P. van Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Diaz, E. Garnier, D. E. Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. V. Vaieretti, and M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11:1065-1071.CrossRefGoogle Scholar
  28. Cova, T. J. 2005. Public safety in the urban-wildland interface: should fire-prone communities have a maximum occupancy? Natural Hazards Review 6:99-108.CrossRefGoogle Scholar
  29. Dahlin, K. M., G. P. Asner, and C. B. Field. 2013. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proceedings of the National Academy of Sciences of the United States of America 110:6895-6900.CrossRefGoogle Scholar
  30. Davies, K. W., A. M. Nafus, and M. D. Madsen. 2013. Medusahead invasion along unimproved roads, animal trails, and random transects. Western North American Naturalist 73:54-59.CrossRefGoogle Scholar
  31. Davis, E. A. 1984. Conversion of Arizona chaparral to grass increases water yield and nitrate loss. Water Resources Research 20:1643-1649.CrossRefGoogle Scholar
  32. Davis, E. A. 1987. Chaparral conversion and streamflow: nitrate increase is balanced mainly by a decrease in bicarbonate. Water Resources Research 23:215-224.CrossRefGoogle Scholar
  33. Davis, E. A., and L. F. DeBano. 1986. Nitrate increases in soil water following conversion of chaparral to grass. Biogeochemistry 2:53-65.CrossRefGoogle Scholar
  34. DeBano, L. F., J. J. Brejda, and J. H. Brock. 1984. Enhancement of riparian vegetation following shrub control in Arizona chaparral. Journal of Soil and Water Conservation 39:317-320.Google Scholar
  35. DeBano, L. F., and C. E. Conrad. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489–497.CrossRefGoogle Scholar
  36. de Koff, J. P., R. C. Graham, K. R. Hubbert, and P. M. Wohlgemuth. 2006. Prefire and postfire erosion of soil nutrients within a chaparral watershed. Soil Science 171.12:915-928.CrossRefGoogle Scholar
  37. Del Galdo, I., W. C. Oechel, and M. F. Cotrufo. 2006. Effects of past, present and future atmospheric CO2 concentrations on soil organic matter dynamics in a chaparral ecosystem. Soil Biology and Biochemistry 38:3235-3244.CrossRefGoogle Scholar
  38. Delwiche, C. C., P. J. Zinke, and C. M. Johnson. 1965. Nitrogen fixation by ceanothus. Plant Physiology 40:1045-1047.CrossRefGoogle Scholar
  39. Diaz, S., J. Kattge, J. H. C. Cornelissen, I. J. Wright, S. Lavorel, S. Dray, B. Reu, M. Kleyer, C. Wirth, I. C. Prentice, E. Garnier, G. Bonisch, M. Westoby, H. Poorter, P. B. Reich, A. T. Moles, J. Dickie, A. N. Gillison, A. E. Zanne, J. Chave, S. J. Wright, S. N. Sheremet'ev, H. Jactel, C. Baraloto, B. Cerabolini, S. Pierce, B. Shipley, D. Kirkup, F. Casanoves, J. S. Joswig, A. Gunther, V. Falczuk, N. Ruger, M. D. Mahecha, and L. D. Gorne. 2016. The global spectrum of plant form and function. Nature 529:167-173.CrossRefGoogle Scholar
  40. Dickens, S. J. M., and E. B. Allen. 2014. Exotic plant invasion alters chaparral ecosystem resistance and resilience pre- and post-wildfire. Biological Invasions 16:1119-1130.CrossRefGoogle Scholar
  41. Dietze, M. C., A. Sala, M. S. Carbone, C. I. Czimczik, J. A. Mantooth, A. D. Richardson, and R. Vargas. 2014. Nonstructural carbon in woody plants. Annual Review of Plant Biology 65:667-687.CrossRefGoogle Scholar
  42. Drenovsky, R. E., C. E. Koehler, K. Skelly, and J. H. Richards. 2013. Potential and realized nutrient resorption in serpentine and non-serpentine chaparral shrubs and trees. Oecologia 171:39-50.CrossRefGoogle Scholar
  43. Dunn, P. H., S. C. Barro, W. G. Wells II, M. A. Poth, P.M. Wohlgemuth, and C. G. Colver. 1988. The San Dimas experimental forest: 50 years of research. General Technical Report PSW-104. Pacific Southwest Region, USDA Forest Service, Berkeley, California, USA.Google Scholar
  44. Fenn, M. E., E. B. Allen, S. B. Weiss, S. Jovan, L. H. Geiser, G. S. Tonnesen, R. F. Johnson, L. E. Rao, B. S. Gimeno, F. Yuan, T. Meixner, and A. Bytnerowicz. 2010. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management 91:2404-2423.CrossRefGoogle Scholar
  45. Fenn, M. E., J. S. Baron, E. B. Allen, H. M. Rueth, K. R. Nydick, L. Geiser, W. D. Bowman, J. O. Sickman, T. Meixner, D. W. Johnson, and P. Neitlich. 2003. Ecological effects of nitrogen deposition in the western United States. Bioscience 53:404-420.CrossRefGoogle Scholar
  46. Fenn, M. E., M. A. Poth, J. D. Aber, J. S. Baron, B. T. Bormann, D. W. Johnson, A. D. Lemly, S. G. McNulty, D. E. Ryan, and R. Stottlemyer. 1998. Nitrogen excess in North American ecosystems: Predisposing factors, ecosystem responses, and management strategies. Ecological Applications 8:706–733.CrossRefGoogle Scholar
  47. Fenn, M. E., M. A. Poth, P. H. Dunn, and S. C. Barro. 1993. Microbial N and biomass, respiration, and N-mineralization in soils beneath 2 chaparral species along a fire-induced age gradient. Soil Biology and Biochemistry 25:457-466.CrossRefGoogle Scholar
  48. Fenn, M. E., M. A. Poth, and D. W. Johnson. 1996. Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. Forest Ecology and Management 82:211-230.CrossRefGoogle Scholar
  49. Fierer, N., and J. P. Schimel. 2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry 34:777-787.CrossRefGoogle Scholar
  50. Firestone, M. K., and E. A. Davidson. 1989. Microbiological basis of NO and N20 production and consumption in soil. Pages 7-21 in M. O. Andreae and D. S. Schimel. Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley and Sons, New York, New York, USA.Google Scholar
  51. Forrester, J. W. 1961. Industrial dynamics. MIT Press, Cambridge, Massachusetts, USA.Google Scholar
  52. Fortin, M. J., R. J. Olson, S. Ferson, L. Iverson, C. Hunsaker, G. Edwards, D. Levine, K. Butera, and V. Klemas. 2000. Issues related to the detection of boundaries. Landscape Ecology 15:453-466.CrossRefGoogle Scholar
  53. Franco-Vizcaino, E., and J. Sosa-Ramirez. 1997. Soil properties and nutrient relations in burned and unburned Mediterranean-climate shrublands of Baja California, Mexico. Acta Oecologica-International Journal of Ecology 18:503-517.CrossRefGoogle Scholar
  54. Franklin, J., A. D. Syphard, H. S. He, and D. J. Mladenoff. 2005. Altered fire regimes affect landscape patterns of plant succession in the foothills and mountains of southern California. Ecosystems 8:885-898.CrossRefGoogle Scholar
  55. Frazer, J. M., and S. D. Davis. 1988. Differential survival of chaparral seedlings during the first summer drought after wildfire. Oecologia 76:215-221.CrossRefGoogle Scholar
  56. Fuentes, D. A., J. A. Gamon, Y. F. Cheng, H. C. Claudio, H. L. Qiu, Z. Y. Mao, D. A. Sims, A. F. Rahman, W. Oechel, and H. Y. Luo. 2006. Mapping carbon and water vapor fluxes in a chaparral ecosystem using vegetation indices derived from AVIRIS. Remote Sensing of Environment 103:312-323.CrossRefGoogle Scholar
  57. Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889-892.CrossRefGoogle Scholar
  58. Garcia, M., J. Gajardo, D. Riano, K. G. Zhao, P. Martin, and S. Ustin. 2015. Canopy clumping appraisal using terrestrial and airborne laser scanning. Remote Sensing of Environment 161:78-88.CrossRefGoogle Scholar
  59. Gardner, P. D., H. J. Cortner, and K. Widaman. 1987. The risk perceptions and policy response toward wildland fire hazards by urban home-owners. Landscape and Urban Planning 14:163-172.CrossRefGoogle Scholar
  60. Giessow, J., and P. H. Zedler. 1996. The effects of fire frequency and firebreaks on the abundance and species richness of exotic species in coastal sage scrub. In J. E. Lovich, J. Randall, and M. D. Kelly, editors. Proceedings of the 1996 California Exotic Pest Council 1996 Symposium, Vol 2, San Diego, California 1996. Available from:
  61. Gill, A. M., and S. L. Stephens. 2009. Scientific and social challenges for the management of fire-prone wildland-urban interfaces. Environmental Research Letters 4:034014.CrossRefGoogle Scholar
  62. Gliksman, D., A. Rey, R. Seligmann, R. Dumbur, O. Sperling, Y. Navon, S. Haenel, P. De Angelis, J. A. Arnone, and J. M. Grunzweig. 2017. Biotic degradation at night, abiotic degradation at day: positive feedbacks on litter decomposition in drylands. Global Change Biology 23:1564-1574.CrossRefGoogle Scholar
  63. Gough, L. P., G. R Meadows, L. L. Jackson, and S. Dudka. 1989. Biogeochemistry of a highly serpentinized, chromite-rich ultramafic area, Tehama County, California. US Geological Survey Bulletin 1901. The US Government Printing Office, Washington D.C., USA.Google Scholar
  64. Graham, R. C., L. M. Egerton-Warburton, P. F. Hendrix, P. J. Shouse, J. L. Johnson-Maynard, S. A. Quideau, P. D. Sternberg, J. A. Jobes, and J. M. Breiner. 2016. Wildfire effects on soils of a 55-year-old chaparral and pine biosequence. Soil Science Society of America Journal 80:376-394.CrossRefGoogle Scholar
  65. Gray, J. T., and W. H. Schlesinger. 1981. Nutrient cycling in Mediterranean-type ecosystems. Pages 259-285 in P. C. Miller, editor. Resource use by chaparral and matorral: a comparison of vegetation function in two Mediterranean-type ecosystems. Springer, Berlin, Germany.CrossRefGoogle Scholar
  66. Green, L. R. 1977. Fuel reduction without fire—current technology and ecosystem impact. Pages 163-171 in Proceedings of the symposium of environmental consequences of fire and fuel management in Mediterranean ecosystems. General Technical Report WO-3. USDA Forest Service, Washington D.C., USA.Google Scholar
  67. Grünzweig, J. M., I. Gelfland, and D. Yakir. 2007. Biogeochemical factors contributing to enhanced carbon storage following afforestation of a semi-arid shrubland. Biogeosciences Discussions, European Geosciences Union 2111-2145.CrossRefGoogle Scholar
  68. Halsey, R. W., and J. E. Keeley. 2016. Conservation issues: California chaparral. In S. A. Elias, D. Alterton, J. K. Cochran, D. A. Dellasala, F. Funiciello, M. I. Goldstein, K. Lajtha, S. Marshall, and P. Mineau. Reference module in earth systems and environmental sciences. Elsevier Publications Inc., Amsterdam, Netherlands. Scholar
  69. Hamilton, J. G. 1997. Changing perceptions of pre-European grasslands in California. Madroño 44:311-333.Google Scholar
  70. Hanan, E. J., C. M. D'Antonio, D. A. Roberts, and J. P. Schimel. 2016a. Factors regulating nitrogen retention during the early stages of recovery from fire in coastal chaparral ecosystems. Ecosystems 19:910-926.CrossRefGoogle Scholar
  71. Hanan, E. J., J. P. Schimel, K. Dowdy, and C. M. D’Antonio. 2016b. Effects of substrate supply, pH, and char on net nitrogen mineralization and nitrification along a wildfire-structured age gradient in chaparral. Soil Biology and Biochemistry 95:87-99.CrossRefGoogle Scholar
  72. Hanawalt, R. B., and R. H. Whittaker. 1976. Altitudnally coordinated patterns of soils and vegetation in San Jacinto Mountains, California. Soil Science 121:114-124.CrossRefGoogle Scholar
  73. Harrison, A. A. T., E. Small, and H. A. Mooney. 1971. Drought relationships and distribution of two Mediterranean-climate California plant communities. Ecology 52:869-875.CrossRefGoogle Scholar
  74. Harte, J. 2002. Toward a synthesis of the Newtonian and Darwinian worldviews. Physics Today 55:29-34.CrossRefGoogle Scholar
  75. Heckman, K., J. Campbell, H. Powers, B. Law, and C. Swanston. 2013. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou National Forest, Oregon, USA. Fire Ecology 9:40-56.CrossRefGoogle Scholar
  76. Hibbert, A. R. 1971. Increases in streamflow after converting chaparral to grass. Water Resources Research 7:71-80.CrossRefGoogle Scholar
  77. Holling, C. S., and L. Gunderson. 2002. Resilience and adaptive cycles. Pages 25-62 in L. Gunderson and C. S. Holling, editors. Panarchy: understanding transformations in human and natural systems. Island Press, Washington D.C., USA.Google Scholar
  78. Homyak, P. M., J. C. Blankinship, K. Marchus, D. M. Lucero, J. O. Sickman, and J. P. Schimel. 2016. Aridity and plant uptake interact to make dryland soils hotspots for nitric oxide (NO) emissions. Proceedings of the National Academy of Sciences of the United States of America 113:E2608-E2616.CrossRefGoogle Scholar
  79. Homyak, P. M., and J. O. Sickman. 2014. Influence of soil moisture on the seasonality of nitric oxide emissions from chaparral soils, Sierra Nevada, California, USA. Journal of Arid Environments 103:46-52.CrossRefGoogle Scholar
  80. Homyak, P. M., J. O. Sickman, A. E. Miller, J. M. Melack, T. Meixner, and J. P. Schimel. 2014. Assessing nitrogen-saturation in a seasonally dry chaparral watershed: limitations of traditional indicators of N-saturation. Ecosystems 17:1286-1305.CrossRefGoogle Scholar
  81. Huxman, T. E., K. A. Snyder, D. Tissue, A. J. Leffler, K. Ogle, W. T. Pockman, D. R. Sandquist, D. L. Potts, and S. Schwinning. 2004. Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254-268.CrossRefGoogle Scholar
  82. Ichii, K., W. L. Wang, H. Hashimoto, F. H. Yang, P. Votava, A. R. Michaelis, and R. R. Nemani. 2009. Refinement of rooting depths using satellite-based evapotranspiration seasonality for ecosystem modeling in California. Agricultural and Forest Meteorology 149:1907-1918.CrossRefGoogle Scholar
  83. Jarvis, P., A. Rey, C. Petsikos, L. Wingate, M. Rayment, J. Pereira, J. Banza, J. David, F. Miglietta, M. Borghetti, G. Manca, and R. Valentini. 2007. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the "Birch effect". Tree Physiology 27:929-940.CrossRefGoogle Scholar
  84. Jenerette, G. D., G. A. Barron-Gafford, A. J. Guswa, J. J. McDonnell, and J. C. Villegas. 2012. Organization of complexity in water limited ecohydrology. Ecohydrology 5:184-199.CrossRefGoogle Scholar
  85. Jenerette, G. D., and A. Chatterjee. 2012. Soil metabolic pulses: water, substrate, and biological regulation. Ecology 93:959-966.CrossRefGoogle Scholar
  86. Jenerette, G. D., R. L. Scott, and T. E. Huxman. 2008. Whole ecosystem metabolic pulses following precipitation events. Functional Ecology 22:924-930.CrossRefGoogle Scholar
  87. Jenerette, G. D., R. L. Scott, and A. R. Huete. 2010. Functional differences between summer and winter season rain assessed with MODIS-derived phenology in a semiarid region. Journal of Vegetation Science 21:16-30.CrossRefGoogle Scholar
  88. Keeley, J. E. 2005. Fire as a threat to biodiversity in fire-type shrublands. Pages 97-106 in B. E. Kus and J. L. Beyers, technical coordinators. Planning for biodiversity—bringing research and management together. General Technical Report PSW-GTR-195. US Forest Service, Pacific Southwest Research Station, Albany, California, USA.Google Scholar
  89. Keeley, J. E., M. Baer-Keeley, and C. J. Fotheringham. 2005. Alien plant dynamics following fire in mediterranean-climate california shrublands. Ecological Applications 15:2109-2125.CrossRefGoogle Scholar
  90. Keeley, J. E., and T. J. Brennan. 2012. Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia 169:1043-1052.Google Scholar
  91. Keeley, J. E., and C. J. Fotheringham. 1997. Trace gas emissions and smoke-induced seed germination. Science 276:1248-1250.CrossRefGoogle Scholar
  92. Knipe, O. D. 1982. Angora goats for conversion of Arizona chaparral: early results. General Technical Report PSW-GTR-59. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA.Google Scholar
  93. Knipe, O. D. 1983. Effects of Angora goat browsing on burned-over Arizona chaparral. Rangelands 5:252-255.Google Scholar
  94. Kruckeberg, A. R. 1984. California serpentines, flora, vegetation, geology, soils, and management problems. University of California Press, Berkeley, California, USA.Google Scholar
  95. Kummerow, J., J. V. Alexander, J. W. Neel, and K. Fishbeck. 1978. Symbiotic nitrogen-fixation in Ceanothus roots. American Journal of Botany 65:63-69.CrossRefGoogle Scholar
  96. Kustas, W. and M. Anderson. 2009. Advances in thermal infrared remote sensing for land surface modeling. Agricultural and Forest Meteorology 149:2071-2081.CrossRefGoogle Scholar
  97. Lambrinos, J. G. 2006. Spatially variable propagule pressure and herbivory influence invasion of chaparral shrubland by an exotic grass. Oecologia 147:327-334.CrossRefGoogle Scholar
  98. Lauvaux, C. A., C. N. Skinner, and A. H. Taylor. 2016. High severity fire and mixed conifer forest-chaparral dynamics in the southern Cascade Range, USA. Forest Ecology and Management 363:74–85CrossRefGoogle Scholar
  99. Lehmann, J., and Kleber, M. 2015. The contentious nature of soil organic matter. Nature 528:60-68.CrossRefGoogle Scholar
  100. Levelt, P. F., G. H. J. Van den Oord, M. R. Dobber, A. Malkki, H. Visser, J. de Vries, P. Stammes, J. O. V. Lundell, and H. Saari. 2006. The ozone monitoring instrument. Ieee Transactions on Geoscience and Remote Sensing 44:1093-1101.CrossRefGoogle Scholar
  101. Levin, S. A. 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1:431-436.CrossRefGoogle Scholar
  102. Levin, S. A. 2000. Fragile dominion: complexity and the commons. Perseus Books, New York, New Yok, USA.Google Scholar
  103. Li, L., M. L. McCormack, C. G. Ma, D. L. Kong, Q. Zhang, X. Y. Chen, H. Zeng, U. Niinemets, and D. L. Guo. 2015. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecology Letters 18:899-906.CrossRefGoogle Scholar
  104. Li, X. Y., T. Meixner, J. O. Sickman, A. E. Miller, J. P. Schimel, and J. M. Melack. 2006. Decadal-scale dynamics of water, carbon and nitrogen in a California chaparral ecosystem: DAYCENT modeling results. Biogeochemistry 77:217-245.CrossRefGoogle Scholar
  105. Li, X. Y., A. E. Miller, T. Meixner, J. P. Schimel, J. M. Melack, and J. O. Sickman. 2010. Adding an empirical factor to better represent the rewetting pulse mechanism in a soil biogeochemical model. Geoderma 159:440-451.CrossRefGoogle Scholar
  106. Liang, L. L., D. A. Grantz, and G. D. Jenerette. 2016. Multivariate regulation of soil CO2 and N2O pulse emissions from agricultural soils. Global Change Biology 22:1286-1298.CrossRefGoogle Scholar
  107. Longstreth, D. T., and D. T. Patten. 1975. Conversion of chaparral to grass in Central Arizona: Effects on selected ions in watershed runoff. American Midland Naturalist 93:25-34.CrossRefGoogle Scholar
  108. Luo, H. Y., W. C. Oechel, S. J. Hastings, R. Zulueta, Y. H. Qian, and H. Kwon. 2007. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Global Change Biology 13:386-396.CrossRefGoogle Scholar
  109. Malamud, B. D., G. Morein, and D. L. Turcotte. 1998. Forest fires: an example of self-organized critical behavior. Science 281:1840-1842.CrossRefGoogle Scholar
  110. May, A. A., G. R. McMeeking, T. Lee, J. W. Taylor, J. S. Craven, I. Burling, A. P. Sullivan, S. Akagi, J. L. Collett, Jr., M. Flynn, H. Coe, S. P. Urbanski, J. H. Seinfeld, R. J. Yokelson, and S. M. Kreidenweis. 2014. Aerosol emissions from prescribed fires in the United States: a synthesis of laboratory and aircraft measurements. Journal of Geophysical Research: Atmospheres 119:11826-11849.Google Scholar
  111. Mayberry, J. A. 2011. Community wildfire preparedness: balancing community safety and ecosystem sustainability in southern California chaparral. Humboldt State University.Google Scholar
  112. Meixner, T., M. E. Fenn, P. Wohlgemuth, M. Oxford, and P. Riggan. 2006. N saturation symptoms in chaparral catchments are not reversed by prescribed fire. Environmental Science and Technology 40:2887-2894.CrossRefGoogle Scholar
  113. Meng, R., P. E. Dennison, C. M. D’Antonio, and M. A. Moritz. 2014. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands. PLoS ONE 9:e110637.CrossRefGoogle Scholar
  114. Milchunas, D. G. 2006. Responses of plant communities to grazing in the southwestern United States. General Technical Report RMRS-GTR-169. USDA Forest Service, Rocky Mountain Research Station, Fort Collins, Colorado, USA.Google Scholar
  115. Miller, A. E., J. P. Schimel, T. Meixner, J. O. Sickman, and J. M. Melack. 2005. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology and Biochemistry 37:2195-2204.CrossRefGoogle Scholar
  116. Minnich, R. A., and C. J. Bahr. 1995. Wildland fire and chaparral succession along the California Baja-California boundary. International Journal of WIldland Fire 5:13-24.CrossRefGoogle Scholar
  117. Mooney, H. A., and P. W. Rundel. 1979. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral. Botanical Gazette 140:109-113.CrossRefGoogle Scholar
  118. Moreno, J. M., I. Torres, B. Luna, W. C. Oechel, and J. E. Keeley. 2013. Changes in fire intensity have carry-over effects on plant responses after the next fire in southern California chaparral. Journal of Vegetation Science 24:395-404.CrossRefGoogle Scholar
  119. Nagle, T. A., and A. H. Taylor. 2005. Fire and persistence of montane chaparral in mixed conifer forest landscapes in the northern Sierra Nevada, Lake Tahoe Basin, California, USA. Journal of the Torrey Botanical Society 132:442-457.CrossRefGoogle Scholar
  120. Niu, G.-Y., C. Paniconi, P. A. Troch, R. L. Scott, M. Durcik, X. Zeng, T. Huxman, and D. C. Goodrich. 2014. An integrated modelling framework of catchment-scale ecohydrological processes: 1. Model description and tests over an energy-limited watershed. Ecohydrology 7:427-439.CrossRefGoogle Scholar
  121. Odum, H. T. 1983. Systems ecology: an introduction. John Wiley & Sons, New York, New York, USA.Google Scholar
  122. Oikawa, P. Y., C. Ge, J. Wang, J. R. Eberwein, L. L. Liang, L. A. Allsman, D. A. Grantz, and G. D. Jenerette. 2015. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region. Nature Communications 6:1-10.Google Scholar
  123. Oikawa, P. Y., D. A. Grantz, A. Chatterjee, J. E. Eberwein, L. A. Allsman, and G. D. Jenerette. 2014. Unifying soil respiration pulses, inhibition, and temperature hysteresis through dynamics of labile soil carbon and O2. Journal of Geophysical Research: Biogeosciences 119:521-536.Google Scholar
  124. Orme, A. R., and R. G. Bailey. 1970. The effect of vegetation conversion and flood discharge on stream channel geometry: a case of southern California watersheds. Proceedings of the American Association of Geographers 2:101-106.Google Scholar
  125. Park, I. W., J. Hooper, J. M. Flegal, and G. D. Jenerette. 2018. Drivers of herbaceous cover throughout chaparral shrublands: Insights from a novel remote sensing method. Diversity and Distributions, in press.Google Scholar
  126. Parker, V.T., R. B. Pratt, and J. E. Keeley. 2016. Chaparral. Pages 479-507 in H. Mooney and E. Zavaleta, editors. Ecosystems of California. University of California Press, Berkeley, California, USA.Google Scholar
  127. Pasquini, S. C., and G. L. Vourlitis. 2010. Post-fire primary production and plant community dynamics in chaparral stands exposed to varying levels of nitrogen deposition. Journal of Arid Environments 74:310-314.CrossRefGoogle Scholar
  128. Pivovaroff, A. L., L. S. Santiago, G. L. Vourlitis, D. A. Grantz, and M. F. Allen. 2016. Plant hydraulic responses to long-term dry season nitrogen deposition alter drought tolerance in a Mediterranean-type ecosystem. Oecologia 181:721-731.CrossRefGoogle Scholar
  129. Pumo, D., F. Viola, and L. V. Noto. 2008. Ecohydrology in Mediterranean areas: a numerical model to describe growing seasons out of phase with precipitations. Hydrology and Earth System Sciences 12:303-316.CrossRefGoogle Scholar
  130. Quideau, S. A., R. C. Graham, O. A. Chadwick, and H. B. Wood. 1998. Organic carbon sequestration under chaparral and pine after four decades of soil development. Geoderma 83:227–242.CrossRefGoogle Scholar
  131. Rao, L. E., E. B. Allen, and T. Meixner. 2010. Risk-based determination of critical nitrogen deposition loads for fire spread in southern California deserts. Ecological Applications 20:1320-1335.CrossRefGoogle Scholar
  132. Rao, L. E., D. R. Parker, A. Bytnerowicz, and E. B. Allen. 2009. Nitrogen mineralization across an atmospheric nitrogen deposition gradient in Southern California deserts. Journal of Arid Environments 73:920-930.CrossRefGoogle Scholar
  133. Rasmussen, C., R. J. Southard, and W. R. Horwath. 2006. Mineral control of organic carbon mineralization in a range of temperate conifer forest soils. Global Change Biology 12:834-847.CrossRefGoogle Scholar
  134. Rice, R. M., E. S. Corbett, and R. G. Bailey. 1969. Soil Slips related to vegetation, topography, and soil in southern California. Water Resources Research 5:647-659.CrossRefGoogle Scholar
  135. Rich, L. R., and H. G. Reynolds. 1963. Grazing in relation to runoff and erosion on some chaparral watersheds of central Arizona. Society for Range Management 16:322-326.CrossRefGoogle Scholar
  136. Riggan, P. J., R. N. Lockwood, and E. N. Lopez. 1985. Deposition and processing of airborne nitrogen pollutants in Mediterranean-type ecosystems of southern California. Environmental Science and Technology 19:781-789.CrossRefGoogle Scholar
  137. Riggan, P. J., R. N. Lockwood, P. M. Jacks, C. G. Colver, F. Weirich, L. F. Debano, and J. A. Brass. 1994. Effects of fire severity on nitrate mobilization in watersheds subject to chronic atmospheric deposition. Environmental Science and Technology 28:369-375.CrossRefGoogle Scholar
  138. Riveros-Iregui, D. A., B. L. McGlynn, R. E. Emanuel, and H. E. Epstein. 2012. Complex terrain leads to bidirectional responses of soil respiration to inter-annual water availability. Global Change Biology 18:749-756.CrossRefGoogle Scholar
  139. Roberts, D. A., P. E. Dennison, K. L. Roth, K. Dudley, and G. Hulley. 2015. Relationships between dominant plant species, fractional cover and land surface temperature in a Mediterranean ecosystem. Remote Sensing of Environment 167:152-167.CrossRefGoogle Scholar
  140. Roberts, S. W., W. C. Oechel, P. J. Bryant, S. J. Hastings, J. Major, and V. Nosov. 1998. A field fumigation system for elevated carbon dioxide exposure in chaparral shrubs. Functional Ecology 12:708-719.CrossRefGoogle Scholar
  141. Rodrigue, C. M. 1993. Home with a view: chaparral fire hazard and the social geographies of risk and vulnerability. California Geographical Society 33:29-42.Google Scholar
  142. Rossi, R. J., D. J. Bain, G. D. Jenerette, L. W. Clarke, and K. Wilson. 2015. Responses of roadside soil cation pools to vehicular emission deposition in southern California. Biogeochemistry 124:131-144.CrossRefGoogle Scholar
  143. Rowe, P. B. 1963. Streamflow increases after removing woodland-riparian vegetation from a southern california watershed. Journal of Forestry 61:365-370.Google Scholar
  144. Rundel, P. W., E. A. Graham, M. F. Allen, J. C. Fisher, and T. C. Harmon. 2009. Environmental sensor networks in ecological research. New Phytologist 182:589-607.CrossRefGoogle Scholar
  145. Rundel, P. W., and D. J. Parsons. 1979. Structural changes in chamise (Adenostoma fasciculatum) along a fire-induced age gradient. Journal of Range Management 32:462-466.CrossRefGoogle Scholar
  146. Scheffer, M., S. Carpenter, J. A. Foley, C. Folke, and B. Walker. 2001. Catastrophic shifts in ecosystems. Nature 413:591-596.CrossRefGoogle Scholar
  147. Scheffer, M., and S. R. Carpenter. 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution 18:648-656.CrossRefGoogle Scholar
  148. Schlesinger, W. H., and E. S. Bernhardt. 2013. Biogeochemistry: an analysis of global change. Academic Press, Waltham, Massachusetts, USA.CrossRefGoogle Scholar
  149. Schmidt, M. W. I., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kogel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner, and S. E. Trumbore. 2011. Persistence of soil organic matter as an ecosystem property. Nature 478:49-56.CrossRefGoogle Scholar
  150. Scott, R. L., T. E. Huxman, G. A. Barron-Gafford, G. D. Jenerette, J. M. Young, and E. P. Hamerlynck. 2014. When vegetation change alters ecosystem water availability. Global Change Biology 20:2198-2210.CrossRefGoogle Scholar
  151. Scott, R. L., G. D. Jenerette, D. L. Potts, and T. E. Huxman. 2009. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. Journal of Geophysical Research: Biogeosciences 114:G04004.CrossRefGoogle Scholar
  152. Serrano, L., J. Penuelas, and S. L. Ustin. 2002. Remote sensing of nitrogen and lignin in Mediterranean vegetation from AVIRIS data: decomposing biochemical from structural signals. Remote Sensing of Environment 81:355-364.CrossRefGoogle Scholar
  153. Severson, K. E., and L. F. Debano. 1991. Influence of Spanish goats on vegetation and soils in Arizona chaparral. Journal of Range Management 44:111-117.CrossRefGoogle Scholar
  154. Shen, W., G. D. Jenerette, D. Hui, R. P. Phillips, and H. Ren. 2008. Effects of changing precipitation regimes on dryland soil respiration and C pool dynamics at rainfall event, seasonal, and interannual scales. Journal of Geophysical Research: Biogeosciences 113:G03024.Google Scholar
  155. Shen, W., G. D. Jenerette, D. Hui, and R. L. Scott. 2016. Precipitation legacy effects on dryland ecosystem carbon fluxes: direction, magnitude and biogeochemical carryovers. Biogeosciences 13:425-439.CrossRefGoogle Scholar
  156. Sidahmed, A. E., J. G. Morris, and S. R. Radosevich. 1981. Summer diet of Spanish goat grazing chaparral. Journal of Range Management 34:1981.CrossRefGoogle Scholar
  157. Sims, D. A., H. Y. Luo, S. Hastings, W. C. Oechel, A. F. Rahman, and J. A. Gamon. 2006. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem. Remote Sensing of Environment 103:289-303.CrossRefGoogle Scholar
  158. Sims, D. A., A. F. Rahman, V. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, P. V. Bolstad, L. B. Flanagan, A. H. Goldstein, D. Y. Hollinger, L. Misson, R. K. Monson, W. C. Oechel, H. P. Schmid, S. C. Wofsy, and L. Xu. 2008. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sensing of Environment 112:1633-1646.CrossRefGoogle Scholar
  159. Six, J., R. T. Conant, E. A. Paul, and K. Paustian. 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil 241:155-176.CrossRefGoogle Scholar
  160. Smith, S. V, S. H. Bullock, A. Hinojosa-Corona, E. Franco-Vizcaino, M. Escoto-Rodriguez, T. G. Kretzschmar, L. M. Farfan, and J. M. Salazar-Cesena. 2007. Soil erosion and significance for carbon fluxes in a mountainous Mediterranean-climate watershed. Ecological Applications 17:1379-1387.CrossRefGoogle Scholar
  161. Sonnentag, O., K. Hufkens, C. Teshera-Sterne, A. M. Young, M. Friedl, B. H. Braswell, T. Milliman, J. O'Keefe, and A. D. Richardson. 2012. Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology 152:159-177.CrossRefGoogle Scholar
  162. Sparks, S. R., W. C. Oechel, and Y. Mauffette. 1993. Photosynthate allocation patterns along a fire-induced age sequence in 2 shrub species from the California chaparral. International Journal of Wildland Fire 3:21-30.CrossRefGoogle Scholar
  163. Stewart, C. E., A. F. Plante, K. Paustian, R. T. Conant, and J. Six. 2008. Soil carbon saturation: linking concept and measurable carbon pools. Soil Science Society of America Journal 72:379-392.CrossRefGoogle Scholar
  164. Stylinski, C. D., J. A. Gamon, and W. C. Oechel. 2002. Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131:366-374.CrossRefGoogle Scholar
  165. Syphard, A. D., T. J. Brennan, and J. E. Keeley. 2014. The role of defensible space for residential structure protection during wildfires. International Journal of WIldland Fire 23:1165-1175.CrossRefGoogle Scholar
  166. Syphard, A. D., K. C. Clarke, and J. Franklin. 2007. Simulating fire frequency and urban growth in southern California coastal shrublands, USA. Landscape Ecology 22:431-445.CrossRefGoogle Scholar
  167. Syphard, A. D., H. M. Regan, J. Franklin, R. M. Swab, and T. C. Bonebrake. 2013. Does functional type vulnerability to multiple threats depend on spatial context in Mediterranean-climate ecosystems? Diversity and Distributions 19:1263-1274.CrossRefGoogle Scholar
  168. Tague, C., L. Seaby, and A. Hope. 2009. Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies. Climatic Change 93:137-155.CrossRefGoogle Scholar
  169. Thanos, C. A., and P. W. Rundel. 1995. Fire-followers in chaparral: nitrogenous compounds trigger seed-germination. Journal of Ecology 83:207-216.CrossRefGoogle Scholar
  170. Treseder, K. K., L. M. Egerton-Warburton, M. F. Allen, Y. F. Cheng, and W. C. Oechel. 2003. Alteration of soil carbon pools and communities of mycorrhizal fungi in chaparral exposed to elevated carbon dioxide. Ecosystems 6:786-796.CrossRefGoogle Scholar
  171. Trueman, R. J., L. Taneva, M. A. Gonzalez-Meler, W. C. Oechel, and H. BassiriRad. 2009. Carbon losses in soils previously exposed to elevated atmospheric CO2 in a chaparral ecosystem: potential implications for a sustained biospheric C sink. Journal of Geochemical Exploration 102:142-148.CrossRefGoogle Scholar
  172. Ulery, A. L., R. C. Graham, O. A. Chadwick, and H. B. Wood. 1995. Decadal-scale changes in of soil carbon, nitrogen, and exchangable cations under chaparral and pine. Geoderma 65:121-134.CrossRefGoogle Scholar
  173. Vourlitis, G. L. 2012. Aboveground net primary production response of semi-arid shrublands to chronic experimental dry-season N input. Ecosphere 3(3):22.CrossRefGoogle Scholar
  174. Vourlitis, G. L. 2017. Chronic N enrichment and drought alter plant cover and community composition in a Mediterranean-type semi-arid shrubland. Oecologia 184:267-277.CrossRefGoogle Scholar
  175. Vourlitis, G. L., C. DeFotis, and W. Kristan. 2015. Effects of soil water content, temperature and experimental nitrogen deposition on nitric oxide (NO) efflux from semiarid shrubland soil. Journal of Arid Environments 117:67-74.CrossRefGoogle Scholar
  176. Vourlitis, G. L., and J. S. Fernandez. 2012. Changes in the soil, litter, and vegetation nitrogen and carbon concentrations of semiarid shrublands in response to chronic dry season nitrogen input. Journal of Arid Environments 82:115-122.CrossRefGoogle Scholar
  177. Vourlitis, G. L., and J. S. Fernandez. 2015. Carbon and nitrogen mineralization of semi-arid shrubland soils exposed to chronic nitrogen inputs and pulses of labile carbon and nitrogen. Journal of Arid Environments 122:37-45.CrossRefGoogle Scholar
  178. Vourlitis, G. L., and C. S. Hentz. 2016. Impacts of chronic N input on the carbon and nitrogen storage of a postfire Mediterranean-type shrubland. Journal of Geophysical Research: Biogeosciences 121:385-398.Google Scholar
  179. Vourlitis, G. L., S. Pasquini, and G. Zorba. 2007a. Plant and soil N response of southern Californian semi-arid shrublands after 1 year of experimental N deposition. Ecosystems 10:263-279.CrossRefGoogle Scholar
  180. Vourlitis, G. L., and S. C. Pasquini. 2009. Experimental dry-season N deposition alters species composition in southern Californian mediterranean-type shrublands. Ecology 90:2183-2189.CrossRefGoogle Scholar
  181. Vourlitis, G. L., S. C. Pasquini, and R. Mustard. 2009. Effects of dry-season N input on the productivity and N storage of Mediterranean-type shrublands. Ecosystems 12:473-488.CrossRefGoogle Scholar
  182. Vourlitis, G. L., G. Zorba, S. C. Pasquini, and R. Mustard. 2007b. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils. Soil Science Society of America Journal 71:836-842.CrossRefGoogle Scholar
  183. Warrick, J. A., and D. M. Rubin. 2007. Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California. Journal of Geophysical Research 112:F02018.CrossRefGoogle Scholar
  184. Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil 199:213-227.CrossRefGoogle Scholar
  185. White, M. D., and K. A. Greer. 2006. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California. Landscape and Urban Planning 74:125-138.CrossRefGoogle Scholar
  186. Williamson, T. N., R. C. Graham, and P. J. Shouse. 2004a. Effects of a chaparral-to-grass conversion on soil physical and hydrologic properties after four decades. Geoderma 123:99-114.CrossRefGoogle Scholar
  187. Williamson, T. N., B. D. Newman, R. C. Graham, and P. J. Shouse. 2004b. Regolith water in zero-order chaparral and perennial grass watersheds four decades after vegetation conversion. Vadose Zone Journal 3:1007-1016.CrossRefGoogle Scholar
  188. Wolkovich, E. M., D. A. Lipson, R. A. Virginia, K. L. Cottingham, and D. T. Bolger. 2010. Grass invasion causes rapid increases in ecosystem carbon storage in a semiarid shrubland. Global Change Biology 16:1351-1365.CrossRefGoogle Scholar
  189. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.CrossRefGoogle Scholar
  190. Wu, J. G., and J. L. David. 2002. A spatially explicit hierarchical approach to modeling complex ecological systems: theory and applications. Ecological Modelling 153:7-26.CrossRefGoogle Scholar
  191. Wu, J. G., and O. L. Loucks. 1995. From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. Quarterly Review of Biology 70:439-466.CrossRefGoogle Scholar
  192. Zink, T. A., M. F. Allen, B. Heinde-Tenhunen, and E. B. Allen. 1995. The effect of a disturbance corridor on an ecological reserve. Restoration Ecology 3:304-310.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • G. Darrel Jenerette
    • 1
  • Isaac W. Park
    • 1
  • Holly M. Andrews
    • 1
  • Jennifer R. Eberwein
    • 1
  1. 1.University of CaliforniaRiversideUSA

Personalised recommendations