Drivers of Chaparral Plant Diversity

Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Chaparral diversity has marked spatial and temporal variation. Evolutionary diversity at the genetic, specific, and lineage level contribute to a very diverse flora. Ecological diversity is evident in life histories that comprise a range of physiological and morphological strategies for dealing with drought, and demographic patterns centered around different seedling recruitment strategies. Community or alpha diversity varies markedly through time. Mature chaparral ranges from monotypic stands of chamise (Adenostoma fasciculatum) to mixed chaparral often with up to a dozen shrub species. The understory contributes relatively little other than a few diminutive annuals and occasional herbaceous perennial resprouts. However, after fire, diversity increases dramatically and is often dominated by annuals that arise from a dormant seedbank with significant contribution of geophytes resprouting and flowering from dormant bulbs and corms. This flora has very diverse life histories, with some present only a year or two and then existing as a dormant seedbank or bulbs until the next fire. Others may persist much longer, often in gaps in the shrub canopy. Postfire dominance-diversity patterns fit a geometric model as most communities are dominated by a few species and the bulk of the flora comprise subordinates that occupy specific microhabitats. Postfire community assembly is a result of competitive interactions and environmental filtering effects. Beta diversity plays a role in community assembly for as heterogeneity of communities in the landscape increases, the potential species pool for a community increases. Gamma diversity is particularly high because species turnover across latitudinal and elevational gradients is high. The role of diversity in conferring community resilience is complex and a function of the life history of shrub dominants and the historical patterns of fires. Under some circumstances low diversity may be more resilient than high diversity, for example under high fire frequency monotypic stands of Adenostoma fasciculatum may resist change better than diverse stands that include obligate seeding shrubs sensitive to short interval fires. Postfire annuals also are sensitive to short interval fires as these disturbances enhance the invasion by more competitive non-native grasses. Expected increases in anthropogenic ignitions due to population growth are the biggest threat to biodiversity in chaparral.

Keywords

Alpha diversity Beta diversity Dominance diversity Ecological diversity Gamma diversity Genetic diversity Postfire diversity 

References

  1. Baldwin, B. G., D. H. Golman, D. J. Keil, R. Patterson, T. J. Rosatti, and D. H. Wilken, editors. 2012. The Jepson manual. Vascular plants of California. University of California Press, Los Angeles, California, USA.Google Scholar
  2. Burge, D. O., J. H. Thorne, S. P. Harrison, B. C. O’Brien, J. P. Rebman, J. R. Shevock, E. R. Alverson, L. K. Hardison, J. D. Rodriguez, S. A. Junak, T. A. Oberbauer, H. Rieman, S. E. Vanderplank, and T. Barry. 2016. Plant diversity and endemism in the California Floristic Province. Madroño 63:3-206.CrossRefGoogle Scholar
  3. Cody, M. L. 1986. Diversity, rarity and conservation in Mediterranean-climate regions. Pages 122-152 in M. E. Soulé, editor. Conservation biology. The science of scarcity and diversity. Sinauer Associates, Sunderland, Massachusetts, USA.Google Scholar
  4. Davis, S. D., K. J. Kolb, and K. P. Barton. 1998. Ecophysiological processes and demographic patterns in the structuring of California chaparral. Pages 297-310 in P. W. Rundel, G. Montenegro, and F. M. Jaksic, editors. Landscape disturbance and biodiversity in Mediterranean-type ecosystems. Springer-Verlag, New York, USA.CrossRefGoogle Scholar
  5. Diamond, J. M. 1975. Assembly of species communities. Pages 342-444 in M. L. Cody and J. M. Diamond, editors. Ecology and evolution of communities. Harvard University Press, Cambridge, Massachusetts, USA.Google Scholar
  6. Dunn, C.P., and C. Loehl. 1988. Species-area parameter estimation: testing the null model of lack of relationship. Global Ecology and Biogeography 9:59-74.Google Scholar
  7. George, A. S., A. J. M. Hopkins, and N. G. Marchant. 1979. The heathlands of Western Australia. Pages 211–230 in R. L. Specht, editor. Ecosystems of the world 9A. Heathlands and related shrublands: descriptive studies. Elsevier Scientific, New York, USA.Google Scholar
  8. Godoy, O., N. J. B. Kraft, and J. M. Levine. 2014. Phylogenetic relatedness and the determinants of competitive outcomes. Ecology Letters 17:836-844.CrossRefGoogle Scholar
  9. Grace, J. B., and J. E. Keeley. 2006. A structural equation model analysis of postfire plant diversity in California shrublands. Ecological Applications 16:503-514.CrossRefGoogle Scholar
  10. Grace, J. B., J. E. Keeley, D. Johnson, and K. A. Bollen. 2012. Structural equation modeling and the analysis of long-term monitoring data. Pages 325-359 in R. A. Gitzen, J. J. Millspaugh, A. B. Cooper, and D. S. Licht, editors. Design and analysis of long-term ecological monitoring studies. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  11. Guo, Q. 2001. Early post-fire succession in California chaparral: changes in diversity, density, cover and biomass. Ecological Research 16:471-485.CrossRefGoogle Scholar
  12. Halsey, R. W., and J. E. Keeley. 2016. Conservation issues: California chaparral. Reference Module in Earth Systems and Environmental Sciences.  https://doi.org/10.1016/B978-0-12-409548-9.09584-1.Google Scholar
  13. Harmon, L. J., and S. Harrison. 2015. Species diversity is dynamic and unbounded at local and continental scales. American Naturalist 185:584-593.CrossRefGoogle Scholar
  14. Harrison, S. P. 2013. Plant and animal endemism in California. University of California Press, Los Angeles, California, USA.CrossRefGoogle Scholar
  15. Harrison, S., H. D. Safford, J. B. Grace, J. H. Viers, and K. F. Davies. 2006. Regional and local species richness in an insular environment: serpentine plants in California. Ecological Monographs 76:41-56.CrossRefGoogle Scholar
  16. Harrison, S., J. H. Viers, J. H. Thorne, and J. B. Grace. 2008. Favorable environments and the persistence of naturally rare species. Conservation Letters 1:65-74.CrossRefGoogle Scholar
  17. Hurlbert, S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577-586.CrossRefGoogle Scholar
  18. Jacobsen, A. L., R. B. Pratt, S. D. Davis, and F. W. Ewers. 2008. Comparative community physiology: nonconvergence in water relations among three semi-arid shrub communities. New Phytologist 180:100-113.CrossRefGoogle Scholar
  19. Keeley, J. E. 1991. Seed germination and life history syndromes in the California chaparral. Botanical Review 57:81‑116.CrossRefGoogle Scholar
  20. Keeley, J. E. 1992a. Recruitment of seedlings and vegetative sprouts in unburned chaparral. Ecology 73:1194‑1208.CrossRefGoogle Scholar
  21. Keeley, J. E. 1992b. A Californian’s view of fynbos. Pages 372‑388 in R. M. Cowling, editor. The ecology of fynbos: nutrients, fire and diversity. Oxford University Press, Oxford, UK.Google Scholar
  22. Keeley, J. E. 1998. Coupling demography, physiology and evolution in chaparral shrubs. Pages 257-264 in P. W. Rundel, G. Montenegro, and F. M. Jaksic editors. Landscape degradation and biodiversity in Mediterranean-type ecosystems. Springer, New York, New York, USA.CrossRefGoogle Scholar
  23. Keeley, J. E. 2000. Chaparral. Pages 203-253 in M. G. Barbour and W. D. Billings, editors. North American terrestrial vegetation. Second edition. Cambridge University Press, Cambridge, UK.Google Scholar
  24. Keeley, J. E., W. J. Bond, R. A. Bradstock, J. G. Pausas, and W. Rundel. 2012a. Fire in Mediterranean climate ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge, UK.Google Scholar
  25. Keeley, J. E. and T. J. Brennan. 2012. Fire driven alien invasion in a fire-adapted ecosystem. Oecologia 169:1043-1052.CrossRefGoogle Scholar
  26. Keeley, J. E., and F. W. Davis. 2007. Chaparral. Pages 339-366 in M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. Terrestrial vegetation of California. Third edition. University of California Press, Los Angeles, California, USACrossRefGoogle Scholar
  27. Keeley, J. E., and C. J. Fotheringham. 2000. Role of fire in regeneration from seed. Pages 311-330 in M. Fenner, editor. Seeds: the ecology of regeneration in plant communities. Second edition. CAB International, Wallingford, UK.CrossRefGoogle Scholar
  28. Keeley, J. E., and C. J. Fotheringham. 2003. Species area relationships in Mediterranean-climate plant communities. Journal of Biogeography 30:1629-1657.CrossRefGoogle Scholar
  29. Keeley, J. E., C. J. Fotheringham, and M. Baer-Keeley. 2005a. Determinants of postfire recovery and succession in Mediterranean-climate shrublands of California. Ecological Applications 15:1515-1534.CrossRefGoogle Scholar
  30. Keeley, J. E., C. J. Fotheringham, and M. Baer-Keeley. 2005b. Factors affecting plant diversity during postfire recovery and succession of Mediterranean-climate shrublands in California, USA. Diversity and Distributions 11:535-537.CrossRefGoogle Scholar
  31. Keeley, J. E., C. J. Fotheringham, and M. Baer-Keeley. 2006. Demographic patterns of postfire regeneration in Mediterranean-climate shrublands of California. Ecological Monographs 76:235-255.CrossRefGoogle Scholar
  32. Keeley, J. E., C. J. Fotheringham, and P. W. Rundel. 2012b. Postfire regeneration of chaparral under Mediterranean and non-Mediterranean climates. Madroño 59:109-127.CrossRefGoogle Scholar
  33. Keeley, J. E., V. T. Parker and M. C. Vasey. 2016. Resprouting and seeding hypotheses: a test of the gap-dependent model using resprouting and obligate seeding subspecies of Arctostaphylos. Plant Ecology 217:743-750.CrossRefGoogle Scholar
  34. Keeley, J. E., and J. G. Pausas. 2016. Evolution of ‘smoke’ induced seed germination in pyroendemic plants. South African Journal of Botany. http://dx.doi.org/10.1016/j.sajb.2016.07.012.
  35. Keeley, J. E., A. H. Pfaff, and H. D. Safford. 2005c. Fire suppression impacts on postfire recovery of Sierra Nevada chaparral shrublands. International Journal of Wildland Fire 14:255-265.CrossRefGoogle Scholar
  36. Keeley, J. E., and A. D. Syphard. 2018. South Coast Bioregion. Pages 319-351 in J. W. van Wagtendonk, N. G. Sugihara, S. L. Stephens, A. E. Thode, K. E. Shaffer, and J. A. Fites-Kaufman, editors. Fire in California’s ecosystems. Second edition. University of California Press, Berkeley, California, USA.Google Scholar
  37. Keeley, J. E., and P. J. van Mantgem. 2008. Community ecology of seedlings. Pages 255-273 in M. A. Leak, V. T. Parker, and R. L. Simpson, editors. Seedling ecology and evolution. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  38. Lomolino, M. V. 2001. The species-area relationship: new challenges for an old pattern. Progress in Physical Geography 25:1-21.Google Scholar
  39. Meentemeyer, R. K., A. Moody, and J. Franklin. 2001. Landscape-scale patterns of shrub-species abundance in California chaparral. Plant Ecology 156:19-41.CrossRefGoogle Scholar
  40. Odion, D. C., and F. W. Davis. 2000. Fire, soil heating, and the formation of vegetation patterns in chaparral. Ecological Monographs 70:149-169.CrossRefGoogle Scholar
  41. Oliver, T. H., M. S. Heard, N. J. B. Isaac, D. B. Roy, D. Procter, F. Eigenbrod, R. Freckleton, A. Hector, C. D. L. Orme, O. L. Petchey, V. Proenca, D. Raffaelli, K. B. Suttle, G. M. Mace, B. Martin-Lopez, B. A. Woodcock, and J. M. Bullock. 2015. Biodiversity and resilience of ecosystem functions. Trends in Ecology and Evolution 30:673-684.CrossRefGoogle Scholar
  42. Parker, V. T., R. B. Pratt, and J. E. Keeley. 2016. Chaparral. Pages 479-507 in H. Mooney, and E. Zavaleta, editors. Ecosystems of California. University of California Press, Berkeley, California, USA.Google Scholar
  43. Pratt, R. B., A. L. Jacobsen, K. A. Golgotiu, J. S. Sperry, F. W. Ewers, and S. D. Davis. 2007. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs 77:239-253.CrossRefGoogle Scholar
  44. Pratt, R. B., G. B. North, A. L. Jacobsen, F. W. Ewers, and S. D. Davis. 2010. Xylem root and shoot hydraulics is linked to life history type in chaparral seedlings. Functional Ecology 24:70-81.CrossRefGoogle Scholar
  45. Rabinowitz, D. 1981. Seven forms of rarity. Pages 205-217 in H. Synge, editor. The biological aspects of rare plant conservation. John Wiley and Sons, New York, New York, USA.Google Scholar
  46. Rice, S. K. 1993. Vegetation establishment in post-fire Adenostoma chaparral in relation to fine-scale pattern in fire intensity and soil nutrients. Journal of Vegetation Science 43:115-124.CrossRefGoogle Scholar
  47. Richerson, P. J., and K. L. Lum. 1980. Patterns of plant species diversity in California: relation to weather and topography. American Naturalist 116:504-536.CrossRefGoogle Scholar
  48. Rosenzweig, M. I. 1995. Species diversity in space and time. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  49. Safford, H. D., and K. M. Van de Water. 2014. Using fire return interval departure (FRID) analysis to map spatial and temporal changes in fire frequency on National Forest lands in California. Research Paper PSW-RP-266. USDA Forest Service, Pacific Southwest Research Station, Albany, California, USA.Google Scholar
  50. Safford, H. D., J. H. Viers, and S. P. Harrison. 2005. Serpentine endemism in the California flora: a database of serpentine affinity. Madroño 52:222-257.CrossRefGoogle Scholar
  51. Shmida, A., and M. V. Wilson. 1985. Biological determinants of species diversity. Journal of Biogeography 12:1-20.CrossRefGoogle Scholar
  52. Simmons, M. T., and R. M. Cowling. 1996. Why is the Cape Peninsula so rich in plant species? An analysis of the independent diversity components. Biodiversity and Conservation 5:551-573.CrossRefGoogle Scholar
  53. Skinner, M. W. and B. M. Pavlik. 1994. California native plant society’s inventory of rare and endangered vascular plants of California. Fifth edition. California Native Plant Society, Sacramento, California, USA.Google Scholar
  54. Swift, C. 1991. Nitrogen utilization strategies of post-fire annual species in the chaparral. University of California, Los Angeles, California, USA.Google Scholar
  55. Tuomisto, H. 2010. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33:2-22.CrossRefGoogle Scholar
  56. Tyler, C., and M. Borchert. 2002. Reproduction and growth of the chaparral geophyte, Zigadenus fremontii (Liliaceae), in relation to fire. Plant Ecology 165:11-20.CrossRefGoogle Scholar
  57. van Mantgem, E. F., J. E. Keeley, and M. Witter. 2015. Faunal responses to fire in California chaparral and sage scrub in California, USA. Fire Ecology 11:128-148.CrossRefGoogle Scholar
  58. Vasey, M. C., V. T. Parker, K. D. Holl, M. E. Loik, and S. Hiatt. 2014. Maritime climate influence on chaparral composition and diversity in the coast range of central California. Ecology and Evolution 4: 3362-3674.CrossRefGoogle Scholar
  59. Wells, P. V. 1962. Vegetation in relation to geological substratum and fire in the San Luis Obispo quadrangle, California. Ecological Monographs 32:79-103.CrossRefGoogle Scholar
  60. Whittaker, R.H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279-338.CrossRefGoogle Scholar
  61. Whittaker, R. H. 1972. Evolution and measurement of species diversity. Taxon 21:213-251.CrossRefGoogle Scholar
  62. Zedler, P. H. 1995. Fire frequency in southern California shrublands: biological effects and management options. Pages 101-112 in J. E. Keeley and T. Scott, editors. Brushfires in California: ecology and resource management. International Association of Wildland Fire, Fairfield, Washington, USA.Google Scholar
  63. Zedler, P. H., C. R. Gautier, and G. S. McMaster. 1983. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809-818.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.U.S. Geological SurveyThree RiversUSA
  2. 2.University of CaliforniaLos AngelesUSA

Personalised recommendations