Advertisement

Chaparral Landscape Conversion in Southern California

  • Alexandra D. Syphard
  • Teresa J. Brennan
  • Jon E. Keeley
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

The low-elevation chaparral shrublands of southern California have long been occupied and modified by humans, but the magnitude and extent of human impact has dramatically increased since the early 1900s. As population growth started to boom in the 1940s, the primary form of habitat conversion transitioned from agriculture to urban and residential development. Now, urban growth is the primary contributor, directly and indirectly, to loss and fragmentation of chaparral landscapes. Different patterns and arrangements of housing development confer different ecological impacts. We found wide variation in the changing extent and pattern of development across the seven counties in the region. Substantial growth in lower-density exurban development has been associated with high frequency of human-caused ignitions as well as the expansion of highly flammable non-native annual grasses. Combined, increases in fire ignitions and the extent of grassland can lead to a positive feedback cycle in which grass promotes fire and shortens the fire-return interval, ultimately extirpating shrub species that are not adapted to short fire intervals. An overlay of a 1930s vegetation map with maps of contemporary vegetation showed a consistent trend of chaparral decline and conversion to sage scrub or grassland. In addition, those areas type-converted to grassland had the highest fire frequency over the latter part of the twentieth century. Thus, a continuing trend of population growth and urban expansion may continue to threaten the extent and intactness of remaining shrubland dominated landscapes. Interactions among housing development, fire ignitions, non-native grasses, roads, and vehicle emissions make fire prevention a complex endeavor. However, land use planning that targets the root cause of conversion, exurban sprawl, could address all of these threats simultaneously.

Keywords

Chaparral Fire Housing development Land use change Non-native species Vegetation change 

References

  1. Alexandre, P. M., S. I. Stewart, M. H. Mockrin, N. S. Keuler, A. D. Syphard, A. Bar-Massada, M. K. Clayton, and V. C. Radeloff. 2015. The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landscape Ecology 31:415-430.CrossRefGoogle Scholar
  2. Alig, R. J., and A. J. Plantinga. 2004. Future forestland area: Impacts from population growth and other factors that affect land values. Journal of Forestry 102:19-24.Google Scholar
  3. Archibald, S., R. J. Scholes, D. P. Roy, G. Roberts, and L. Boschetti. 2010. Southern African fire regimes as revealed by remote sensing. International Journal of Wildland Fire 19:861-878.CrossRefGoogle Scholar
  4. Bartolome, J. W., and B. Gemmill. 1981. The ecological status of Stipa pulchra (Poaceae) in California. Madroño 28:172-184.Google Scholar
  5. Bolger, D. T. 1991. Community perturbations: introduced species and habitat fragmentation. University of California, San Diego, California, USA.Google Scholar
  6. Bolger, D. T., A. V. Suarez, K. R. Crooks, S. A. Morrison, and T. J. Case. 2000. Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecological Applications 10:1230-1248.CrossRefGoogle Scholar
  7. Bonebrake, T. C., A. D. Syphard, J. Franklin, K. E. Anderson, H. R. Akçakaya, T. Mizerek, C. Winchell, and H. M. Regan. 2014. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime. Conservation Biology 28:1057-1067.CrossRefGoogle Scholar
  8. Bar-Massada, A., V. C. Radeloff, and S. I. Stewart. 2014. Biotic and abiotic effects of human settlements in the wildland-urban interface. BioScience 64:429-437.CrossRefGoogle Scholar
  9. Beltrán, B., J. Franklin, A. D. Syphard, H. M. Regan, L. E. Flint, and A. L. Flint. 2014. Effects of climate change and urban development on the distribution and conservation of plant functional types in a Mediterranean-type ecosystem. International Journal of Geographic Information Science 28:1561-1589.CrossRefGoogle Scholar
  10. Bowman, D. M. J. S., H. J. MacDermott, S. C. Nichol, and B. P. Murphy. 2014. A grass–fire cycle eliminates an obligate-seeding tree in a tropical savanna. Ecology and Evolution 4:4185-4194.CrossRefGoogle Scholar
  11. Brennan, T. J., and J. E. Keeley. 2015. Effect of mastication and other mechanical treatments on fuel structure in chaparral. International Journal of Wildland Fire 24:949-963.Google Scholar
  12. Brooks, M. L., C. M. D’Antonio, D. M. Richardson, J. B. Grace, J. E. Keeley, J. M. DiTomaso, R. J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of invasive alien plants on fire regimes. Bioscience 54:677-688.CrossRefGoogle Scholar
  13. Burcham, L. T. 1956. Historical backgrounds of range land use in California. Journal of Range Management 9:81-86.CrossRefGoogle Scholar
  14. Butsic, V., A. Syphard, J. E. Keeley, and A. Bar-Massada. 2017. Modeling the impact of private land conservation on wildfire risk in San Diego County, California. Landscape and Urban Planning 157:161-169.CrossRefGoogle Scholar
  15. Chen, I.-C., J. K. Hill, R. Ohlemüller, D. B. Roy, and C. D. Thomas. 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333:1024-1026.CrossRefGoogle Scholar
  16. Cohen, J. 2004. Relating flame radiation to home ignition using modeling and experimental crown fires. Canadian Journal of Forest Research 34:1616-1626.CrossRefGoogle Scholar
  17. Cooper, W. S. 1922. The broad-sclerophyll vegetation of California: an ecological study of the chaparral and its related communities. Carnegie Institution of Washington, Washington D.C., USA.Google Scholar
  18. Conlisk, E., A. D. Syphard, J. Franklin, and H. M. Regan. 2015. Predicting the impact of fire on a vulnerable multi-species community using a dynamic vegetation model. Ecological Modelling 301:27-39.CrossRefGoogle Scholar
  19. Cox, R. D., K. L. Preston, R. F. Johnson, R. A. Minnich, and E. B. Allen. 2014. Influence of landscape-scale variables on vegetation conversion to non-native annual grassland in southern California, USA. Global Ecology and Conservation 2:190-203.CrossRefGoogle Scholar
  20. Dahal, K. R., S. Benner, and E. Lindquist. 2017. Urban hypotheses and spatiotemporal characterization of urban growth in the Treasure Valley of Idaho, USA. Applied Geography 79:11-25.CrossRefGoogle Scholar
  21. D’Antonio, C. M., and P. M. Vitousek. 1992. Biological invasions by non-native grasses, the grass/fire cycle, and global change. Annual Review of Ecology and Systematics 23:63-87.CrossRefGoogle Scholar
  22. Fenn, M. E., E. B. Allen, S. B. Weiss, S. Jovan, L. H. Geiser, G. S. Tonnesen, R. F. Johnson, L. E. Rao, B. S. Gimeno, F. Yuan, and T. Meixner. 2010. Nitrogen critical loads and management alternatives for N-impacted ecosystems in California. Journal of Environmental Management 91:2404-2423.CrossRefGoogle Scholar
  23. Franklin, J., H. M. Regan, and A. D. Syphard. 2014. Linking spatially explicit species distribution and population models to plan for the persistence of plant species under global change. Environmental Conservation 41:97-109.CrossRefGoogle Scholar
  24. Gabet, E. J., and T. Dunne. 2002. Landslides on coastal sage-scrub and grassland hillslopes in a severe El Niño winter: the effects of vegetation conversion on sediment delivery. Bulletin of the Geological Society of America 114:983-990.CrossRefGoogle Scholar
  25. Gavier-Pizarro, A. G. I., V. C. Radeloff, S. I. Stewart, D. Cynthia, and N. S. Keuler. 2010. Housing is positively associated with invasive non-native plant species richness in New England, USA. Ecological Applications 20:1913-1925.CrossRefGoogle Scholar
  26. Glaeser, E. L., and J. M. Shapiro. 2003. Urban growth in the 1990s: is city living back? Journal of regional science 43:139-165.CrossRefGoogle Scholar
  27. Goodchild, M. F., F. W. Davis, M. Painho, and D. M. Stoms. 1991. The use of vegetation maps and Geographic Information Systems for assessing conifer lands in California. Technical Report 91-23. National Center for Geographic Information and Analysis, University of California, Santa Barbara, California, USA.Google Scholar
  28. Goodchild, M., and S. Gopal. 1989. The accuracy of spatial databases. Taylor & Francis, London, UK.Google Scholar
  29. Gude, P. H., R. Rasker, and J. van den Noort. 2008. Potential for future development on fire-prone lands. Journal of Forestry 106:198-205.Google Scholar
  30. Gutierrez, J., R. E. Sosebee, and K. E. Spaeth. 1995. Spatial variation of runoff and erosion under grass and shrub cover on a semiarid rangeland. Pages 11-20 in T. J. Ward, editor. Watershed Management-Planning for the 21st Century. American Society of Civil Engineers, San Antonio, Texas, USA.Google Scholar
  31. Haidinger, T. L., and J. E. Keeley. 1993. Role of high fire frequency in destruction of mixed chaparral. Madroño 40:141-147.Google Scholar
  32. Halsey, R. W., and A. D. Syphard. 2015. High-severity fire in chaparral cognitive dissonance in the shrublands. Pages 177-209 in The ecological importance of mixed-severity fires: nature's phoenix. First edition. Elsevier, Amsterdam, Netherlands.CrossRefGoogle Scholar
  33. Hammer, R. B., S. I. Stewart, R. L. Winkler, V. C. Radeloff, and P. R. Voss. 2004. Characterizing dynamic spatial and temporal residential density patterns from 1940-1990 across the north central United States. Landscape and Urban Planning 69:183-199.CrossRefGoogle Scholar
  34. Hammer, R. B., S. I. Stewart, and V. C. Radeloff. 2009. Demographic trends, the wildland-urban interface, and wildfire management. Society & Natural Resources 22:777-782.CrossRefGoogle Scholar
  35. Hansen, A. J., R. L. Knight, J. M. Marzluff, S. Powell, K. Brown, P. H. Gude, and K. Jones. 2005. Effects of exurban development on biodiversity: patterns, mechanisms, and research needs. Ecological Applications 15:1893-1905.CrossRefGoogle Scholar
  36. Herold, M., N. C. Goldstein, and K. C. Clarke. 2003. The spatiotemporal form of urban growth: measurement, analysis and modeling. Remote Sensing of Environment 86:286-302.CrossRefGoogle Scholar
  37. Hubbert, K. R., P. M. Wohlgemuth, J. L. Beyers, M. G. Narog, and R. Gerrard. 2012. Post-fire soil water repellency, hydrologic response, and sediment yield compared between grass-converted and chaparral watersheds. Fire Ecology 8:143-162.CrossRefGoogle Scholar
  38. Jennings, M. K., R. L. Lewison, T. W. Vickers, and W. M. Boyce. 2016. Puma response to the effects of fire and urbanization. Journal of Wildlife Management 80:221-234.CrossRefGoogle Scholar
  39. Keeley, J. E. 1986. Resilience of Mediterranean shrub communities to fire. Pages 95-112 in B. Dell, A. J. M. Hopkins, and B. B. Lamont, editors. Resilience in Mediterranean-type ecosystems. Dr. W. Junk Publishers, Dordrecht, Netherlands.CrossRefGoogle Scholar
  40. Keeley, J. E. 2010. Fire on California landscapes. Fremontia 38:2-6Google Scholar
  41. Keeley, J. E., M. Baer-Keeley, and C. J. Fotheringham. 2005. Alien plant dynamics following fire in Mediterranean-climate California shrublands. Ecological Applications 15:2109-2125.CrossRefGoogle Scholar
  42. Keeley, J. E., and T. J. Brennan. 2012. Fire-driven alien invasion in a fire-adapted ecosystem. Oecologia 169:1043-1052.CrossRefGoogle Scholar
  43. Keeley, J. E., W. J. Bond, R. A. Bradstock, J. G. Pausas, and P. W. Rundel. 2012. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge, UK.Google Scholar
  44. Keeley, J. E., and C. J. Fotheringham. 2003. Impact of past, present, and future fire regimes on North American Mediterranean shrublands. Pages 218-262 in T. T. Veblen, W. L. Baker, G. Montenegro, and T. W. Swetnam, editors. Fire and climatic change in temperate ecosystems of the western Americas. Springer, New York, USA.CrossRefGoogle Scholar
  45. Keeley, J. E., H. D. Safford, C. J. Fotheringham, J. Franklin, and M. A. Moritz. 2009. The 2007 southern California wildfires: lessons in complexity. Journal of Forestry 107:287-296.Google Scholar
  46. Keeley, J. E., A. D. Syphard, and C. J. Fotheringham. 2013. The 2003 and 2007 wildfires in southern California. Pages 42–52 in S. Boulter, J. Palutikof, and D. J. Karoly, editors. Natural disasters and adaptation to climate change. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  47. Keeley, J. E., and A. D. Syphard. 2015. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada region. International Journal of Wildland Fire 24:27-36.CrossRefGoogle Scholar
  48. Keeley, J. E., and A.D. Syphard. 2016. Climate change and future fire regimes: examples from California. Geosciences 6:37.CrossRefGoogle Scholar
  49. Keeley, J. E. and A.D. Syphard. 2018. South Coast bioregion. Pages 319-351 in J. W. van Wagtendonk, N. G. Sugihara, S. L. Stephens, A. E. Thode, K. E. Shaffer, and J. A. Fites-Kaufman, editors. Fire in California’s ecosystems. Second edition. University of California Press, Berkeley, California, USA.Google Scholar
  50. Kelly, M. 2016. Rescuing and sharing historical vegetation data for ecological analysis: the California Vegetation Type Mapping project. Biodiversity Informatics 11:40-62.CrossRefGoogle Scholar
  51. Kelly, M., B. Allen-Diaz, and N. Kobzina. 2005. Digitization of a historic dataset: the Wieslander California vegetation type mapping project. Madroño 52:191-201.CrossRefGoogle Scholar
  52. Kinney, A. 1887. Report on the forests of the counties of Los Angeles, San Bernardino, and San Diego, California. First biennial report. California State Board of Forestry, Sacramento, California, USA.Google Scholar
  53. Landis, J. D., and M. Reilly. 2003. How we will grow: baseline projections of California’s urban footprint through the year 2100. Pages 55-98 in S. Guhathakurta, editor. Integrated land use and environmental models: a survey of current applications and research. Springer Berlin Heidelberg, Heidelberg, Germany.CrossRefGoogle Scholar
  54. Lee, C. A., and W. K. Lauenroth. 1994. Spatial distributions of grass and shrub root systems in the shortgrass steppe. American Midland Naturalist 132:117-123.CrossRefGoogle Scholar
  55. Lenth, B. A., R. L. Knight, and W. C. Gilgert. 2006. Conservation value of clustered housing developments. Conservation Biology 20:1445-1456.CrossRefGoogle Scholar
  56. Lippitt, C. L., D. A. Stow, J. F. O’Leary, and J. Franklin. 2012. Influence of short-interval fire occurrence on post-fire recovery of fire-prone shrublands in California, USA. International Journal of Wildland Fire 22:184-193.CrossRefGoogle Scholar
  57. Mack, R. N. 1989. Temperate grasslands vulnerable to plant invasions: characteristics and consequences. Pages 155-179 in J. A. Drake, H. A. Mooney, F. D. Castri, R. H. Groves, F. J. Kruger, M. Rejmanek, and M. Williamson, editors. Biological invasions: a global perspective. John Wiley and Sons, New York, New York, USA.Google Scholar
  58. Mann, M. L., P. Berck, M. A. Moritz, E. Batllori, J. G. Baldwin, C. K. Gately, and D. R. Cameron. 2014. Modeling residential development in California from 2000 to 2050: integrating wildfire risk, wildland and agricultural encroachment. Land Use Policy 41:438-452.CrossRefGoogle Scholar
  59. Martinez-Fernandez, J., F. Lopez-Bermudez, J. Martinez-Fernandez, and A. Romero-Diaz. 1995. Land use and soil-vegetation relationships in a Mediterranean ecosystem: El Ardal, Murcia, Spain. Catena 25:153-167.CrossRefGoogle Scholar
  60. Martinez-Meza, E., and W. G. Whitford. 1996. Stemflow, throughfall and channelization of stemflow by roots in three Chihuahuan desert shrubs. Journal of Arid Environments 32:271-287.CrossRefGoogle Scholar
  61. Mayer, K. E., and W. F. Laudenslayer Jr. 1988. A guide to the wildlife habitats of California. California Department of Forestry and Fire Protection, Sacraemento, California, USA.Google Scholar
  62. Meng, R., P. E. Dennison, C. M. D’Antonio, and M. A. Moritz. 2014. Remote sensing analysis of vegetation recovery following short-interval fires in southern California shrublands. PLoS One 9:e110637.CrossRefGoogle Scholar
  63. Merriam, K. E., J. E. Keeley, and J. L. Beyers. 2006. Fuel breaks affect nonnative species abundance in Californian plant communities. Ecological Applications 16:515-527.CrossRefGoogle Scholar
  64. Minnich, R. A., and R. J. Dezzani. 1998. Historical decline of coastal sage scrub in the Riverside-Perris Plain, California. Western Birds 29:366-391.Google Scholar
  65. Moritz, M. A., E. Batllori, R. A. Bradstock, A. M. Gill, J. Handmer, P. F. Hessburg, J. Leonard, S. McCaffrey, D. C. Odion, T. Schoennagel, and A. D. Syphard. 2014. Learning to coexist with wildfire. Nature 515:58-66.CrossRefGoogle Scholar
  66. Netusil, N. R. 2005. The effect of environmental zoning and amenities on property values: Portland, Oregon. Land Economics 81:227-246.CrossRefGoogle Scholar
  67. Odell, E. A., D. M. Theobald, and R. L. Knight. 2003. Incorporating ecology into land use planning: the songbirds’ case for clustered development. Journal of the American Planning Association 69:72-82.CrossRefGoogle Scholar
  68. Petrie, M. D., S. L. Collins, A. M. Swann, P. L. Ford, and M. E. Litvak. 2015. Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Global Change Biology 21:1226-1235.CrossRefGoogle Scholar
  69. Penman, T. D., L. Collins, A. D. Syphard, J. E. Keeley, and R. A. Bradstock. 2014. Influence of fuels, weather and the built environment on the exposure of property to wildfire. PLoS ONE 9:e111414.CrossRefGoogle Scholar
  70. Poessel, S. A., C. L. Burdett, E. E. Boydston, L. M. Lyren, R. S. Alonso, R. N. Fisher, and K. R. Crooks. 2014. Roads influence movement and home ranges of a fragmentation-sensitive carnivore, the bobcat, in an urban landscape. Biological Conservation 180:224-232.CrossRefGoogle Scholar
  71. Prestemon, J. P., D. T. Butry, K. L. Abt, and R. Sutphen. 2010. Net benefits of wildfire prevention education efforts. Forest Science 56:181-192.Google Scholar
  72. Price, O. F., R. A. Bradstock, J. E. Keeley, and A. D. Syphard. 2012. The impact of antecedent fire area on burned area in southern California coastal ecosystems. Journal of Environmental Management 113:301-307.CrossRefGoogle Scholar
  73. Quarles, S. L., Y. Valachovic, G. Nakamura, G. Nader, and M. De LaSaux. 2010. Home survival in wildfire-prone areas: building materials and design considerations. Publication 8393. University of California, Agriculture and Natural Resources, Richmond, California, USA.CrossRefGoogle Scholar
  74. Radeloff, V. C., R. B. Hammer, S. I. Stewart, J. S. Fried, S. S. Holcomb, and J. F. McKeefry. 2005. The wildland-urban interface in the United States. Ecological Applications 15:799-805.CrossRefGoogle Scholar
  75. Regan, H. M., M. Colyvan, and M. A. Burgman. 2002. A taxonomy and treatment of uncertainty for ecology and conservation biology. Ecological Applications 12:618-628.CrossRefGoogle Scholar
  76. Riley, S. P. D., R. M. Sauvajot, T. K. Fuller, E. C. York, D. A. Kamradt, C. Bromley, and R. Wayne. 2003. Effects of urbanization and habitat fragmentation on bobcats and coyotes in Southern California. Conservation Biology 17:566-576.CrossRefGoogle Scholar
  77. Riordan, E. C., and P. W. Rundel. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PloS One 9:e86487.CrossRefGoogle Scholar
  78. Roderick, K. 2002. The San Fernando Valley: America’s suburb. Los Angeles Times Books, Los Angeles, California, USA.Google Scholar
  79. Rossiter, N. A., S. A. Setterfield, M. M. Douglas, and L. B. Hutley. 2003. Testing the grass-fire cycle: alien grass invasion in the tropical savannas of northern Australia. Diversity and Distributions 9:169-176.CrossRefGoogle Scholar
  80. Ruell, E. W., S. P. D. Riley, M. R. Douglas, M. F. Antolin, J. R. Pollinger, J. A. Tracy, L. Lyren, E. E. Boydston, R. N. Fisher, and K. R. Crooks. 2012. Urban habitat fragmentation and genetic population structure of bobcats in coastal Southern California. The American Midland Naturalist 168:265-280.CrossRefGoogle Scholar
  81. Safford, H. D., and K. M. Van de Water. 2014. Using fire return interval departure (FRID) analysis to map spatial and temporal changes in fire frequency on national forest lands in California. Research Paper PSW-RP-266. USDA Forest Service, Pacific Southwest Research Station, Albany, California, USA.Google Scholar
  82. Soulé, M. E., A. C. Alberts, and D. T. Bolger. 1992. The effects of habitat fragmentation on chaparral plants and vertebrates. Oikos 63:39-47.CrossRefGoogle Scholar
  83. Sproul, F., T. Keeler-Wolf, P. Gordon-Reedy, J. Dunn, A. Klein, K. Harper. 2011. Vegetation classification manual for western San Diego County. Prepared for San Diego Association of Governments, San Diego, California, USA.Google Scholar
  84. Stewart, S. I., V. C. Radeloff, R. B. Hammer, and T. J. Hawbaker. 2007. Defining the wildland – urban interface. Journal of Forestry 105:201-207.Google Scholar
  85. Sushinsky, J. R., J. R. Rhodes, H. P. Possingham, T. K. Gill, and R. A. Fuller. 2013. How should we grow cities to minimize their biodiversity impacts? Global Change Biology 19:401-410.CrossRefGoogle Scholar
  86. Syphard, A. D., A. Bar-Massada, V. Butsic, and J. E. Keeley. 2013a. Land use planning and wildfire: development policies influence future probability of housing loss. PLoS One 8:e71708.CrossRefGoogle Scholar
  87. Syphard, A. D., T. J. Brennan, and J. E. Keeley. 2014. The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire 23:1165-1175.CrossRefGoogle Scholar
  88. Syphard, A. D., T. J. Brennan, and J. E. Keeley. 2016a. The importance of building construction materials relative to other factors affecting structure survival during wildfire. International Journal of Disaster Risk Reduction 21:140-147.CrossRefGoogle Scholar
  89. Syphard, A. D., V. Butsic, A. Bar-Massada, J. E. Keeley, J. A. Tracey, and R. N. Fisher. 2016b. Setting priorities for private land conservation in fire-prone landscapes: are fire risk reduction and biodiversity conservation competing or compatible objectives? Ecology and Society 21:2.CrossRefGoogle Scholar
  90. Syphard, A. D., J. Franklin, and J. E. Keeley. 2006. Simulating the effects of frequent fire on southern California coastal shrublands. Ecological Applications 16:1744-1756.CrossRefGoogle Scholar
  91. Syphard, A. D., J. E. Keeley, and T. J. Brennan. 2011. Comparing the role of fuel breaks across southern California national forests. Forest Ecology and Management 261:2038-2048.CrossRefGoogle Scholar
  92. Syphard, A. D., J. E. Keeley, A. Bar-Massada, T. J. Brennan, and V. C. Radeloff. 2012. Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS ONE 7:e33954.CrossRefGoogle Scholar
  93. Syphard, A. D., and J. E. Keeley. 2015. Location, timing, and extent of wildfire varies by cause of ignition. International Journal of Wildland Fire 24:37-47.CrossRefGoogle Scholar
  94. Syphard, A. D., and J. E. Keeley. 2017. Historical reconstructions of California wildfires vary by data source. International Journal of Wildland Fire 25:1221-1227.CrossRefGoogle Scholar
  95. Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. Hammer. 2007. Human influence on California fire regimes. Ecological Applications 17:1388-402.CrossRefGoogle Scholar
  96. Syphard, A. D., V. C. Radeloff, T. J. Hawbaker, and S. I. Stewart. 2009. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. Conservation Biology 23:758-769.CrossRefGoogle Scholar
  97. Syphard, A. D., H. M. Regan, J. Franklin, R. M. Swab, and T. C. Bonebrake. 2013b. Does functional type vulnerability to multiple threats depend on spatial context in Mediterranean-climate regions? Diversity and Distributions 19:1263-1274.CrossRefGoogle Scholar
  98. Talluto, M., and K. Suding. 2008. Historical change in coastal sage scrub in southern California, USA in relation to fire frequency and air pollution. Landscape Ecology 23:803-815.CrossRefGoogle Scholar
  99. Wieslander, A. E. 1935. A vegetation type map of California. Madroño 3:140-144.Google Scholar
  100. Williamson, T. N., R. C. Graham, and P. J. Shouse. 2004. Effects of a chaparral-to-grass conversion on soil physical and hydrologic properties after four decades. Geoderma 123:99-114.CrossRefGoogle Scholar
  101. Wu, J., and A. J. Plantinga. 2003. The influence of public open space on urban spatial structure. Journal of Environmental Economics and Management 46:288-309.CrossRefGoogle Scholar
  102. Zedler, P. H., C. R. Gautier, and G. S. McMaster. 1983. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64:809-818.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexandra D. Syphard
    • 1
  • Teresa J. Brennan
    • 2
  • Jon E. Keeley
    • 3
    • 4
  1. 1.Conservation Biology InstituteCorvallisUSA
  2. 2.US Geological SurveyThree RiversUSA
  3. 3.U.S. Geological SurveyThree RiversUSA
  4. 4.University of CaliforniaLos AngelesUSA

Personalised recommendations