California Chaparral and Its Global Significance

  • Philip W. Rundel
Part of the Springer Series on Environmental Management book series (SSEM)


Chaparral ecosystems represent the iconic vegetation of California, and in particular southern California, where it forms the dominant vegetation cover over broad areas of the foothills of the Coast, Transverse, and Peninsular ranges. Evergreen sclerophyll shrubs which makeup the characteristic component of chaparral communities parallel a similar dominance of this life-form in the Mediterranean Basin, central Chile, the Cape Region of South Africa, and Southwest Australia, regions of the world with a Mediterranean-type climate of warm dry summers and cool wet winters. The Mediterranean Biome comprised of these five regions are biodiversity hotspots that contain about one-sixth of the vascular plant species in the world in just 2.2% of the world’s land area. Despite this global significance, these regions continue to be heavily impacted by urbanization, land-use change, climate change, and invasions by non-native species. Chaparral floras include not just the dominant woody shrubs but a diverse assemblage of annual and herbaceous perennial species, many of which have life histories linked to postfire succession. Fire is a natural component of the disturbance regime of chaparral and burns broad portions of the landscape in a coarse-grained manner, but with fine-grained differences in fuel composition and slope aspects. Short fire-return intervals of less than 10–15 years present an increasing threat to chaparral ecosystems by eliminating shrub regeneration and leading to type-conversion to non-native annual grasslands. Water availability and associated adaptive traits of drought tolerance are major factors in partitioning chaparral community composition. Nutrient availability is also important, as are, to a lesser extent, extremes of winter temperature. Although often maligned as a useless or even dangerous because of concerns over fire hazard, chaparral ecosystems provide critical ecosystem services through their roles in erosion control, hydrology, biomass sequestration, and preservation of biodiversity.


Chaparral Conservation Ecosystem services Fire Mediterranean-type shrublands Phenology 


  1. Axelrod, D. I. 1989. Age and origin of chaparral. Pages 7-19 in S. C. Keeley, editor. The California chaparral: paradigms reexamined. Natural History Museum of Los Angeles County, Los Angeles, California, USA.Google Scholar
  2. Bhaskar, R., and D. D. Ackerly. 2006. Ecological relevance of minimum seasonal water potentials. Physiologia Plantarum 127:353-359.CrossRefGoogle Scholar
  3. Boorse, G. C., F. W. Ewers, and S. D. Davis. 1998. Response of chaparral shrubs to below-freezing temperatures: acclimation, ecotypes, seedlings vs. adults. American Journal of Botany 85:1224-1230.CrossRefGoogle Scholar
  4. Boykin, L. M., M. C. Vasey, V. T. Parker, and R. Patterson. 2005. Two lineages of Arctostaphylos (Ericaceae) identified using the internal transcribed spacer (ITS) region of the nuclear genome. Madroño 52:139-147.CrossRefGoogle Scholar
  5. Burge, D. O., D. M. Erwin, M. B. Islam, J. Kellermann, S. W. Kembel, D. H. Wilken, and P. S. Manos. 2011. Diversification of Ceanothus (Rhamnaceae) in the California Floristic Province. International Journal of Plant Sciences 172:1137-1164.CrossRefGoogle Scholar
  6. Carmel, Y., and C. H. Flather. 2004. Comparing landscape scale vegetation dynamics following recent disturbance in climatically similar sites in California and the Mediterranean Basin. Landscape Ecology 19:573-590.CrossRefGoogle Scholar
  7. Christensen, N. L. 1973. Fire and the nitrogen cycle in California chaparral. Science 181:66-68.CrossRefGoogle Scholar
  8. Christensen, N. L., and C. H. Muller. 1975. Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecological Monographs 45:29-55.CrossRefGoogle Scholar
  9. Cody, M. L., and H. A. Mooney. 1978. Convergence versus nonconvergence in Mediterranean-climate ecosystems. Annual Review of Ecology and Systematics 9:265-321.CrossRefGoogle Scholar
  10. Cowling, R. M., F. Ojeda, B. B. Lamont, P. W. Rundel, and R. Lechmere‐Oertel. 2005. Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire‐prone Mediterranean‐climate ecosystems. Global Ecology and Biogeography 14:509-519.CrossRefGoogle Scholar
  11. Cowling, R. M., A. J. Potts, P. L. Bradshaw, J. Colville, M. Arianoutsou, S. Ferrier, F. Forest, N. M. Fyllas, S. D. Hopper, F. Ojeda, S. Proches, R. J. Smith, P. W. Rundel, E. Vassilakis, and B. R. Zutta. 2015. Variation in plant diversity in Mediterranean-climate ecosystems: the role of climatic and topographical stability. Journal of Biogeography 42:552-564.CrossRefGoogle Scholar
  12. Cowling, R. M., P. W. Rundel, B. B. Lamont, M. K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology and Evolution 11:362-366.CrossRefGoogle Scholar
  13. Davis, S. D., F. W. Ewers, J. S. Sperry, K. A. Portwood, M. C. Crocker, and G. C. Adams. 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany 89:820-828.CrossRefGoogle Scholar
  14. Davis, S. D., F. W. Ewers, J. Wood, J. J. Reeves, and K. J. Kolb. 1999a. Differential susceptibility to xylem cavitation among three pairs of Ceanothus species in the Transverse Mountain Ranges of southern California. Ecoscience 6:180-186.CrossRefGoogle Scholar
  15. Davis, S. D., K. J. Kolb, and K. P. Barton. 1998. Ecophysiological processes and demographic patterns in the structuring of California chaparral. Pages 297-310 in P. W. Rundel, G. Montenegro, and F. Jaksic, editors. Landscape disturbance and biodiversity in Mediterranean-type ecosystems. Springer-Verlag, New York, USA.Google Scholar
  16. Davis, S. D., and H. A. Mooney. 1986. Water use patterns of four co-occurring chaparral shrubs. Oecologia 70:172-177.CrossRefGoogle Scholar
  17. Davis, S. D., J. S. Sperry, and U. G. Hacke. 1999b. The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany 86:1367-1372.CrossRefGoogle Scholar
  18. DeBano, L. F., and C. E. Conrad. 1978. The effect of fire on nutrients in a chaparral ecosystem. Ecology 59:489-497.CrossRefGoogle Scholar
  19. Drude, O. 1890. Handbuch der Pflanzengeographie. Verlag von J. Engelhorn, Stuttgart, Germany.Google Scholar
  20. Fenn, M. E., and M. A. Poth. 1999. Temporal and spatial trends in streamwater nitrate concentrations in the San Bernardino Mountains, southern California. Journal of Environmental Quality 28:822-836.CrossRefGoogle Scholar
  21. Field, C., J. Merino, and H. A. Mooney. 1983. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60:384-389.CrossRefGoogle Scholar
  22. Fried, J. S., C. L. Bosinger, and D. Beardsley. 2004. Chaparral in southern and central coastal California in the mid-1990’s: area, ownership, condition, and change. Resource Bulletin PNW-RB-240. USDA Forest Service, Pacific Northwest Research Station, Portland, Oregon, USA.Google Scholar
  23. Gabet, E. J., and T. Dunne. 2002. Landslides on coastal sage-scrub and grassland hillslopes in a severe El Niño winter: the effects of vegetation conversion on sediment delivery. Geological Society of America Bulletin 114:983-990.CrossRefGoogle Scholar
  24. Grisebach, A. 1872. Die Vegetation der Erde nach Ihrer Klimatischen Anordnung. W. Engelmann, Leipzig, Germany.Google Scholar
  25. Halsey, R. W. and J. E. Keeley. 2016. Conservation issues: California chaparral. Reference Module in Earth Systems and Environmental Sciences. Scholar
  26. Hayhoe, K., D. Cayan, C. B. Field, P. C. Frumhoff, E. P. Maurer, N. L. Miller, S.C. Moser, S.H. Schneider, K. N. Cahill, E. E. Cleland, L. Dale, R. Drapek, R. M. Hanemann, L. S. Kalkstein, J. Lenihan, C. K. Lunch, R. P. Neilson, S. C. Sheridan, J. H. Verville 2004. Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences 101:12422-12427CrossRefGoogle Scholar
  27. Hill, L. W., and R. M. Rice. 1963. Converting from brush to grass increases water yield in southern Californi Journal of Range Management 16:300-305CrossRefGoogle Scholar
  28. Holland, R. F. 1986. Preliminary descriptions of the terrestrial natural communities of California. State of California, The Resources Agency, Non-game Heritage Program, Department of Fish and Game, Sacramento, California, USA.Google Scholar
  29. Holland, V. L. 1977. Major plant communities of California. Pages 3-41 in D. R. Walters, M. McLeod, A. G. Meyer, D. Rible, R. O. Baker, and L. Farwell, editors. Native plants: a viable option. Symposium. California Native Plant Society Special Publication 3, Sacramento, California, USA.Google Scholar
  30. Holland, V. L., and D. J. Keil. 1989. California vegetation. El Corral Publications, San Luis Obispo, California, USA.Google Scholar
  31. Jacobsen, A. L., R. B. Pratt, F. W. Ewers, and S. D. Davis. 2007. Cavitation resistance among twenty-six chaparral species of southern California. Ecological Monographs 77:99-115.CrossRefGoogle Scholar
  32. Keeley, J. E., W. J. Bond, R. A. Bradstock, J. G. Pausas, P. W. Rundel. 2012a. Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge, UK.Google Scholar
  33. Keeley, J. E., and F. W. Davis. 2007. Chaparral. Pages 339-366 in M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. Terrestrial vegetation of California. University of California Press, Berkeley, California, USA.CrossRefGoogle Scholar
  34. Keeley, J. E., C. J. Fotheringham, and P. W. Rundel. 2012b. Postfire chaparral regeneration under Mediterranean and non-Mediterranean climates. Madroño 59:109-127.CrossRefGoogle Scholar
  35. Keeley, J. E., H. Safford, C. J. Fotheringham, J. Franklin, and M. Moritz. 2009. The 2007 southern California wildfires: lessons in complexity. Journal of Forestry 107:287-296.Google Scholar
  36. Keeley, J. E., and P. H. Zedler. 2009. Large, high‐intensity fire events in southern California shrublands: debunking the fine‐grain age patch model. Ecological Applications 19:69-94.CrossRefGoogle Scholar
  37. Kolb, K. J., and S. D. Davis. 1994. Drought tolerance and xylem embolism in co-occurring species of coastal sage and chaparral. Ecology 75:648-659.CrossRefGoogle Scholar
  38. Knipe, O., C. Pase, and R. Carmichael. 1979. Plants of the Arizona chaparral. General Technical Report RM-GTR-54. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado, USA.Google Scholar
  39. Kreft, H., and W. Jetz. 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences 104:5925-5930.CrossRefGoogle Scholar
  40. Kremen, C., N. M. Williams, R. L. Bugg, J. P. Fay, and R. W. Thorp. 2004. The area requirements of an ecosystem service: Crop pollination by native bee communities in California. Ecology Letters 7:1109-1119.CrossRefGoogle Scholar
  41. LaDochy, S., R. Medina, and W. Patzert. 2007. Recent California climate variability: spatial and temporal patterns in temperature trends. Climate Research 33:159-169.CrossRefGoogle Scholar
  42. Lamont, B. B., and T. He. 2012. Fire-adapted Gondwanan angiosperm floras evolved in the Cretaceous. BMC Evolutionary Biology 12:223.CrossRefGoogle Scholar
  43. Langan, S. J., F. W. Ewers, and S. D. Davis. 1997. Differential susceptibility to xylem embolism caused by freezing and water stress in two species of chaparral shrubs. Plant, Cell and Environment 20:425-437.CrossRefGoogle Scholar
  44. Lepper, M. G., and M. Fleschner. 1977. Nitrogen fixation by Cercocarpus ledifolius (Rosaceae) in pioneer habitats. Oecologia 27:333-338.CrossRefGoogle Scholar
  45. Luo, H., W. C. Oechel, S. J. Hastings, R. Zulueta, Y. Qian, and H. Kwon. 2007. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Global Change Biology 13:386-396.CrossRefGoogle Scholar
  46. Meixner, T., and P. M. Wohlgemuth. 2003. Climate variability, fire, vegetation recovery, and watershed hydrology. Pages 651-656 in K. G. Renard, S. A. McElroy, W. J. Gburek, E. H. Canfield, and R. L. Scott, editors. Proceedings of the First Interagency Conference on Research in the Watersheds, Benson, Arizona, October 27-30, 2003. US Department of Agriculture, Agricultural Research Service, USA.Google Scholar
  47. Millennium Ecosystem Assessment. 2005. Ecosystems and human well-being. World Resources Institute, Washington, D.C., USA.Google Scholar
  48. Moody, A., and R. K. Meentemeyer. 2001. Environmental factors influencing spatial patterns of woody plant diversity in chaparral, Santa Ynez Mountains, California. Journal of Vegetation Science 12:41-52.CrossRefGoogle Scholar
  49. Mooney, H. A. 1989. Chaparral physiological ecology—paradigms revisited. Pages 85-90 in S. C. Keeley, editor. The California chaparral: paradigms reexamined. Natural History Museum of Los Angeles County, Los Angeles, California, USA.Google Scholar
  50. Mooney, H. A., J. Kummerow, A. W. Johnson, D. J. Parsons, S. Keeley, A. Hoffmann, R. I. Hays, J. Giliberto, and C. Chu. 1977. Convergent evolution in the consumer organisms of the Mediterranean Chile and California. Pages 85-143 in H. A. Mooney, editor. Convergent evolution in Chile and California: Mediterranean climate ecosystems. Dowden, Hutchinson, and Ross, Stroudsberg, Pennsylvania, USA.Google Scholar
  51. Mooney, H. A., and P. C. Miller. 1985. Chaparral. Pages 213-231 in B. F. Chabot and H. A. Mooney, editors. Physiological ecology of North American plant communities. Chapman and Hall, New York, New York, USA.CrossRefGoogle Scholar
  52. Mooney, H. A., and P. W. Rundel. 1979. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral. Botanical Gazette 140:109-113.CrossRefGoogle Scholar
  53. Myers N., R. A. Mittermeier, C. G. Mittermeier, G.A.B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.CrossRefGoogle Scholar
  54. Ng, E., and P. C. Miller. 1980. Soil moisture relations in the southern California chaparral. Ecology 61:98-107.CrossRefGoogle Scholar
  55. Neelin, J. D., B. Langenbrunner, J. S. Meyerson, A. Hall, and N. Berg. 2013. California winter precipitation change under global warming in the coupled model intercomparison project phase 5 ensemble. Journal of Climate 26:6238-6256.CrossRefGoogle Scholar
  56. Nilsen, E. T., and W. H. Schlesinger. 1981. The influence of the Mediterranean climate on nutrients, particularly nitrogen in an even-aged stand of the summer deciduous, fire response shrub Lotus scoparius. Oecologia 50:217-224.CrossRefGoogle Scholar
  57. Oechel, W. C., S. J. Hastings, G. L. Vourlitis, M. A. Jenkins, and C. L. Hinkson. 1995. Direct effects of elevated CO2 in chaparral and Mediterranean-type ecosystems. Pages 58-75 in J. L. Moreno, and W. C. Oechel, editors. Global change and Mediterranean-type ecosystems. Springer-Verlag, New York, New York, USA.CrossRefGoogle Scholar
  58. Oechel, W. C., W. T. Lawrence, J. Mustafa, and J. Martinez. 1981. Energy and carbon acquisition. Pages 151-183 in P. C. Miller, editor. Resource use by chaparral and matorral. Springer-Verlag, New York, New York, USA.CrossRefGoogle Scholar
  59. Parker, V. T., R. B. Pratt, and J. E. Keeley. 2016. Chaparral. Pages 479-508 in H. Mooney, and E. Zavaleta, editors. Ecosystems of California—a source book. University of California Press, Berkeley, USA.Google Scholar
  60. Pratt, R. B., A. L. Jacobsen, K. A. Golgotiu, J. S. Sperry, F. W. Ewers, and S. D. Davis. 2007. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs 77:239-253.CrossRefGoogle Scholar
  61. Pratt, R. B., A. L. Jacobsen, R. Mohla, F. W. Ewers, and S. D. Davis. 2008. Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae). Journal of Ecology 96:1252-1265.CrossRefGoogle Scholar
  62. Pratt, S. D., A. S. Konopka, M. A. Murry, F. W. Ewers, and S. D. Davis. 1997. Influence of soil moisture on the nodulation of post fire seedlings of Ceanothus spp. growing in the Santa Monica Mountains of southern California. Physiologia Plantarum 99:673-679.CrossRefGoogle Scholar
  63. Ren, D., R. Fu, L. M. Leslie, and R. E. Dickinson. 2011. Modeling the mudslide aftermath of the 2007 southern California wildfires. Natural Hazards 57:327-343.CrossRefGoogle Scholar
  64. Riggan, P. J., and P. H. Dunn. 1981. Harvesting chaparral biomass for energy—an environmental assessment. Pages 22-26 in C. E. Conrad, and W. C. Oechel, editors. Proceedings of the Symposium on Dynamics and Management of Mediterranean-Type Ecosystems, San Diego, California, June 22–26, 1981. General Technical Report PSW-GTR-58. USDA Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, California, USA.Google Scholar
  65. Riggan, P. J., S. Franklin, and J. A. Brass. 1985. Fire and chaparral management at the chaparral/urban interface. Fremontia 14:28-30.Google Scholar
  66. Riordan, E. C., and P. W. Rundel. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PLoS ONE 9:e86487.CrossRefGoogle Scholar
  67. Rundel, P. W. 1982. Nitrogen use efficiency in Mediterranean-climate shrubs of California and Chile. Oecologia 55:409-413.CrossRefGoogle Scholar
  68. Rundel, P. W. 2007. Sage scrub. Pages 208-228 in M. G. Barbour, T. Keeler-Wolf, and A. A. Schoenherr, editors. Terrestrial vegetation of California. University of California Press, Berkeley, California, USA.CrossRefGoogle Scholar
  69. Rundel, P. W. 2011. Convergence and divergence in Mediterranean-climate ecosystems: what we can learn by comparing similar places. Pages 93-108 in M. Price, and I. Billick, editors. The ecology of place. University of Chicago Press, Chicago, Illinois, USA.Google Scholar
  70. Rundel, P. W., M. K. Arroyo, R. M. Cowling, J. E. Keeley, B. B. Lamont, and P. Vargas. 2016. Mediterranean biomes: evolution of the floras, vegetation, and climate regime. Annual Review of Ecology, Evolution and Systematics 47: 383-407.CrossRefGoogle Scholar
  71. Rundel, P. W., G. A. Baker, D. J. Parsons, and T. J. Stohlgren. 1987. Post-fire demography of resprouting and seedling establishment by Adenostoma fasciculatum in the California chaparral. Pages 575-596 in J. Tenhunen, F. M. Catarino, O. L. Lange, and W. C. Oechel, editors. Plant response to stress - functional analysis in Mediterranean ecosystems. Springer-Verlag, Heidelberg, Germany.CrossRefGoogle Scholar
  72. Rundel, P. W., G. Montenegro, and F. Jaksic, editors. 1998. Landscape disturbance and biodiversity in Mediterranean-type ecosystems. Springer-Verlag, Berlin, Germany.Google Scholar
  73. Rundel, P. W., and D. J. Parsons. 1980. Nutrient changes in two chaparral shrubs along a fire-induced age gradient. American Journal of Botany 67:51-58.CrossRefGoogle Scholar
  74. Rundel, P. W., D. J. Parsons, and G. A. Baker. 1981. Productivity and nutritional responses of Chamaebatia foliolosa (Rosaceae) to seasonal burning. Pages 191-196 in N. Margaris, and H. A. Mooney, editors. Components of productivity of Mediterranean-climate regions. Dr. W. Junk Publishers, The Hague, Netherlands.CrossRefGoogle Scholar
  75. Rundel, P. W., and D. J. Parsons. 1984. Post-fire uptake of nutrients by diverse ephemeral herbs in chamise chaparral. Oecologia 61:285-288.CrossRefGoogle Scholar
  76. Rundel, P. W., and J. L. Vankat. 1989. Chaparral communities and ecosystems. Pages 127-139 in S. Keeley, editor. The California chaparral; paradigms reexamined. Los Angeles County Museum of Natural History, Los Angeles, California, USA.Google Scholar
  77. Safford, H. D. 2007. Man and fire in southern California: doing the math. Fremontia 35:25-29.Google Scholar
  78. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774.CrossRefGoogle Scholar
  79. Sawyer, J. O., T. Keeler-Wolf, and J. M. Evens. 2009. A manual of California vegetation. California Native Plant Society Press, Sacramento, California, USA.Google Scholar
  80. Schimper, A. F. W. 1903. Plant-geography upon a physiological basis. Clarendon Press, Oxford, UK.Google Scholar
  81. Schlesinger, W. H., and M. M. Hasey. 1980. The nutrient content of precipitation, dry fallout, and intercepted aerosols in the chaparral of southern California. American Midland Naturalist 103:114-122.CrossRefGoogle Scholar
  82. Schoenberg, F. P., R. Peng, Z. Huang, and P. W. Rundel. 2003. Detection of non-linearities in the dependence of burn area on fuel age and climatic variables. International Journal of Wildland Fire 12:1-6.CrossRefGoogle Scholar
  83. Specht, R. L., and E. J. Moll. 1983. Mediterranean-type heathlands and sclerophyllous shrublands of the world: an overview. Pages 41-65 in F. J. Kruger, D. T. Mitchell, J. U. M. Jarvis, editors. Mediterranean-type ecosystems: the role of nutrients. Springer-Verlag Heidelberg, Germany.CrossRefGoogle Scholar
  84. Stohlgren, T. J., D. J. Parsons, and P. W. Rundel. 1984. Population structure of Adenostoma fasciculatum in mature stands of chamise chaparral in the southern Sierra Nevada, California. Oecologia 64:87-91.CrossRefGoogle Scholar
  85. Suc J.-P. 1984. Origin and evolution of the Mediterranean vegetation and climate of Europe. Nature 307:429-432.CrossRefGoogle Scholar
  86. Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. Hammer. 2007. Human influence on California fire regimes. Ecological Applications 17:1388-1402.CrossRefGoogle Scholar
  87. Thomas, C. M., and S. D. Davis. 1989. Recovery patterns of three chaparral shrub species after wildfire. Oecologia 80:309-320.CrossRefGoogle Scholar
  88. Underwood, E. C., J. H. Viers, K. R. Klausmeyer, R. L. Cox, and M. R. Shaw. 2009. Threats and biodiversity in the Mediterranean biome. Diversity and Distributions 15:188-197.CrossRefGoogle Scholar
  89. Van de Water, K. M., and H. D. Safford. 2011. A summary of fire frequency estimates for California vegetation before Euroamerican settlement. Fire Ecology 7:26-58.CrossRefGoogle Scholar
  90. Vankat, J. 1989. Water stress in chaparral shrubs in summer rain versus summer drought climates: whither the Mediterranean type climate paradigm. Pages 117-124 in S. C. Keeley, editor. The California chaparral: paradigms reexamined. Natural History Museum of Los Angeles County, Los Angeles, California, USA.Google Scholar
  91. Vasey, M. C., M. E. Loik, and V. T. Parker. 2012. Influence of summer marine fog and low cloud stratus on water relations of evergreen woody shrubs (Arctostaphylos: Ericaceae) in the chaparral of central California. Oecologia 170:325-337.CrossRefGoogle Scholar
  92. Venturas, M. D., E. D. MacKinnon, H. L. Dario, A. L. Jacobsen, R. B. Pratt, and S. D. Davis. 2016. Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California’s historic drought of 2014. PLoS ONE 11:e0159145.CrossRefGoogle Scholar
  93. Zedler, P. H. 1997. Review: A manual of California vegetation by John O. Sawyer and Todd Keeler-Wolf. Madroño 44:214-219.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations