Skip to main content

Measures of Spike Train Synchrony and Directionality

  • Chapter
  • First Online:
Mathematical and Theoretical Neuroscience

Part of the book series: Springer INdAM Series ((SINDAMS,volume 24))

  • 1519 Accesses

Abstract

Measures of spike train synchrony have become important tools in both experimental and theoretical neuroscience. Three time-resolved measures called the ISI-distance, the SPIKE-distance, and SPIKE-synchronization have already been successfully applied in many different contexts. These measures are time scale independent, since they consider all time scales as equally important. However, in real data one is typically less interested in the smallest time scales and a more adaptive approach is needed. Therefore, in the first part of this Chapter we describe recently introduced generalizations of the three measures, that gradually disregard differences in smaller time-scales. Besides similarity, another very relevant property of spike trains is the temporal order of spikes. In the second part of this chapter we address this property and describe a very recently proposed algorithm, which quantifies the directionality within a set of spike train. This multivariate approach sorts multiple spike trains from leader to follower and quantifies the consistency of the propagation patterns. Finally, all measures described in this chapter are freely available for download.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html.

  2. 2.

    http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html.

  3. 3.

    http://mariomulansky.github.io/PySpike.

References

  1. Andrzejak, R.G., Kreuz, T.: Characterizing unidirectional couplings between point processes and flows. Europhys. Lett. 96, 50012 (2011)

    Google Scholar 

  2. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2011)

    Google Scholar 

  3. Boers, N., Bookhagen, B., Barbosa, H.M.J., Marwan, N., Kurths, J., Marengo, J.A.: Prediction of extreme floods in the eastern central andes based on a complex networks approach. Nat. Commun. 5, 5199 (2014)

    Google Scholar 

  4. Bower, M.R., Stead, M., Meyer, F.B., Marsh, W.R., Worrell, G.A.: Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Epilepsia 53, 807 (2012)

    Google Scholar 

  5. Chicharro, D., Andrzejak, R.G.: Reliable detection of directional couplings using rank statistics. Phys. Rev. E 80(2), 026217 (2009)

    Google Scholar 

  6. Chicharro, D., Kreuz, T., Andrzejak, R.G.: What can spike train distances tell us about the neural code? J. Neurosci. Methods 199, 146–165 (2011)

    Google Scholar 

  7. Dowsland, K.A., Thompson, J.M.: Simulated annealing. In: Handbook of Natural Computing, pp. 1623–1655. Springer, Berlin (2012)

    Google Scholar 

  8. Dura-Bernal, S., Li, K., Neymotin, S.A., Francis, J.T., Principe, J.C., Lytton, W.W.: Restoring behavior via inverse neurocontroller in a lesioned cortical spiking model driving a virtual arm. Front. Neurosci. 10, 28 (2016)

    Google Scholar 

  9. Espinal, A., Rostro-Gonzalez, H., Carpio, M., Guerra-Hernandez, E.I., Ornelas-Rodriguez, M., Puga-Soberanes, H.J., Sotelo-Figuero, M.A., Melin, P.: Quadrupedal robot locomotion: a biologically inspired approach and its hardware implementation. Comput. Intell. Neurosci. 2016, 5615618 (2016)

    Google Scholar 

  10. Jolivet, R., Kobayashi, R., Rauch, A., Naud, R., Shinomoto, S., Gerstner, W.: A benchmark test for a quantitative assessment of simple neuron models. J. Neurosci. Methods 169, 417 (2008)

    Article  Google Scholar 

  11. Kreuz, T.: Synchronization measures. In: Quian Quiroga, R., Panzeri, S. (eds.) Principles of Neural Coding, p. 97. CRC Taylor and Francis, Boca Raton, FL (2013)

    Google Scholar 

  12. Kreuz, T., Haas, J.S., Morelli, A., Abarbanel, H.D.I., Politi, A.: Measuring spike train synchrony. J. Neurosci. Methods 165, 151 (2007)

    Article  Google Scholar 

  13. Kreuz, T., Mormann, F., Andrzejak, R.G., Kraskov, A., Lehnertz, K., Grassberger, P.: Measuring synchronization in coupled model systems: a comparison of different approaches. Phys. D 225, 29 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kreuz, T., Chicharro, D., Greschner, M., Andrzejak, R.G.: Time-resolved and time-scale adaptive measures of spike train synchrony. J. Neurosci. Methods 195, 92 (2011)

    Article  Google Scholar 

  15. Kreuz, T., Chicharro, D., Houghton, C., Andrzejak, R.G., Mormann, F.: Monitoring spike train synchrony. J. Neurophysiol. 109, 1457 (2013)

    Article  Google Scholar 

  16. Kreuz, T., Mulansky, M., Bozanic, N.: SPIKY: a graphical user interface for monitoring spike train synchrony. J. Neurophysiol. 113, 3432 (2015)

    Google Scholar 

  17. Kreuz, T., Satuvuori, E., Pofahl, M., Mulansky, M.: Leaders and followers: quantifying consistency in spatio-temporal propagation patterns. New J. Phys. 19, 043028 (2017)

    Article  Google Scholar 

  18. Mainen, Z., Sejnowski, T.J.: Reliability of spike timing in neocortical neurons. Science 268, 1503 (1995)

    Article  Google Scholar 

  19. Malvestio, I., Kreuz, T., Andrzejak, RG: Robustness and versatility of a nonlinear interdependence method for directional coupling detection from spike trains. Phys. Rev. E 96, 022203 (2017)

    Article  Google Scholar 

  20. Mulansky, M., Kreuz, T.: Pyspike - a python library for analyzing spike train synchrony. Softw. X 5, 183–189 (2016)

    Google Scholar 

  21. Pereda, E., Quian Quiroga, R., Bhattacharya, J.: Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1 (2005)

    Article  Google Scholar 

  22. Quian Quiroga, R., Kreuz, T., Grassberger, P.: Event synchronization: a simple and fast method to measure synchronicity and time delay patterns. Phys. Rev. E 66, 041904 (2002)

    Article  MathSciNet  Google Scholar 

  23. Rahbar, F., Anzalone, S., Varni, G., Zibetti, E., Ivaldi, S., Chetouani, M.: Predicting extraversion from non-verbal features during a face-to-face human-robot interaction. In: International Conference on Social Robotics, p. 10 (2015)

    Google Scholar 

  24. Satuvuori, E., Mulansky, M., Bozanic, N., Malvestio, I., Zeldenrust, F., Lenk, K., Kreuz, T.: Measures of spike train synchrony for data with multiple time-scales. J. Neurosci. Methods 287, 25 (2017)

    Article  Google Scholar 

  25. Truccolo, W., Donoghue, J.A., Hochberg, L.R., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Brown, E.N., Halgren, E., Cash, S.S.: Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 635 (2011)

    Article  Google Scholar 

  26. van Rossum, M.C.W.: A novel spike distance. Neural Comput. 13, 751 (2001)

    Article  MATH  Google Scholar 

  27. Varni, G., Volpe, G., Camurri, A.: A system for real-time multimodal analysis of nonverbal affective social interaction in user-centric media. IEEE Trans. Multimedia 12, 576 (2010)

    Article  Google Scholar 

  28. Victor, J.D.: Spike train metrics. Curr. Opin. Neurobiol. 15, 585 (2005)

    Article  Google Scholar 

  29. Victor, J.D., Purpura, K.P.: Nature and precision of temporal coding in visual cortex: a metric-space analysis. J. Neurophysiol. 76, 1310 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. #642563 ‘Complex Oscillatory Systems: Modeling and Analysis’ (COSMOS). T.K. also acknowledges support from the European Commission through Marie Curie Initial Training Network ‘Neural Engineering Transformative Technologies’ (NETT), project 289146. We thank Ralph G. Andrzejak, Nebojsa Bozanic, Kerstin Lenk, Mario Mulansky, and Martin Pofahl for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eero Satuvuori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satuvuori, E., Malvestio, I., Kreuz, T. (2017). Measures of Spike Train Synchrony and Directionality. In: Naldi, G., Nieus, T. (eds) Mathematical and Theoretical Neuroscience. Springer INdAM Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-68297-6_13

Download citation

Publish with us

Policies and ethics