Cross-Lingual Entity Alignment via Joint Attribute-Preserving Embedding
Abstract
Entity alignment is the task of finding entities in two knowledge bases (KBs) that represent the same real-world object. When facing KBs in different natural languages, conventional cross-lingual entity alignment methods rely on machine translation to eliminate the language barriers. These approaches often suffer from the uneven quality of translations between languages. While recent embedding-based techniques encode entities and relationships in KBs and do not need machine translation for cross-lingual entity alignment, a significant number of attributes remain largely unexplored. In this paper, we propose a joint attribute-preserving embedding model for cross-lingual entity alignment. It jointly embeds the structures of two KBs into a unified vector space and further refines it by leveraging attribute correlations in the KBs. Our experimental results on real-world datasets show that this approach significantly outperforms the state-of-the-art embedding approaches for cross-lingual entity alignment and could be complemented with methods based on machine translation.
Keywords
Cross-lingual entity alignment Knowledge base embedding Joint attribute-preserving embeddingNotes
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Nos. 61370019, 61572247 and 61321491).
References
- 1.Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)Google Scholar
- 2.Bordes, A., Weston, J., Collobert, R., Bengio, Y.: Learning structured embeddings of knowledge bases. In: AAAI, pp. 301–306 (2011)Google Scholar
- 3.Cheatham, M., Hitzler, P.: String similarity metrics for ontology alignment. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 294–309. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41338-4_19
- 4.Chen, D., Socher, R., Manning, C.D., Ng, A.Y.: Learning new facts from knowledge bases with neural tensor networks and semantic word vectors (2013). arXiv:1301.3618
- 5.Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multi-lingual knowledge graph embeddings for cross-lingual knowledge alignment. In: IJCAI (2017)Google Scholar
- 6.Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)MathSciNetzbMATHGoogle Scholar
- 7.Feng, X., Tang, D., Qin, B., Liu, T.: English-Chinese knowledge base translation with neural network. In: COLING, pp. 2935–2944 (2016)Google Scholar
- 8.Fu, B., Brennan, R., O’Sullivan, D.: Cross-lingual ontology mapping - an investigation of the impact of machine translation. In: Gómez-Pérez, A., et al. (eds.) ASWC, pp. 1–15 (2009)Google Scholar
- 9.Fu, B., Brennan, R., O’Sullivan, D.: Cross-lingual ontology mapping and its use on the multilingual semantic web. In: WWW Workshop on Multilingual Semantic Web, pp. 13–20 (2010)Google Scholar
- 10.Gentile, A.L., Ristoski, P., Eckel, S., Ritze, D., Paulheim, H.: Entity matching on web tables : a table embeddings approach for blocking. In: EDBT, pp. 510–513 (2017)Google Scholar
- 11.Hao, Y., Zhang, Y., He, S., Liu, K., Zhao, J.: A joint embedding method for entity alignment of knowledge bases. In: Chen, H., Ji, H., Sun, L., Wang, H., Qian, T., Ruan, T. (eds.) CCKS 2016. CCIS, vol. 650, pp. 3–14. Springer, Singapore (2016). doi: 10.1007/978-981-10-3168-7_1 CrossRefGoogle Scholar
- 12.Klein, P., Ponzetto, S.P., Glavaš, G.: Improving neural knowledge base completion with cross-lingual projections. In: EACL, pp. 516–522 (2017)Google Scholar
- 13.Krompaß, D., Baier, S., Tresp, V.: Type-Constrained Representation Learning in Knowledge Graphs. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 640–655. Springer, Cham (2015). doi: 10.1007/978-3-319-25007-6_37
- 14.Lin, Y., Liu, Z., Sun, M.: Knowledge representation learning with entities, attributes and relations. In: IJCAI, pp. 2866–2872 (2016)Google Scholar
- 15.Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)Google Scholar
- 16.Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space (2013). arXiv:1301.3781
- 17.Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)Google Scholar
- 18.Nickel, M., Tresp, V., Kriegel, H.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)Google Scholar
- 19.Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). doi: 10.1007/978-3-319-46523-4_30 CrossRefGoogle Scholar
- 20.Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)Google Scholar
- 21.Spohr, D., Hollink, L., Cimiano, P.: A machine learning approach to multilingual and cross-lingual ontology matching. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 665–680. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25073-6_42 CrossRefGoogle Scholar
- 22.Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)Google Scholar
- 23.Wang, Z., Li, J., Wang, Z., Tang, J.: Cross-lingual knowledge linking across wiki knowledge bases. In: WWW, pp. 459–468 (2012)Google Scholar
- 24.Xing, C., Wang, D., Liu, C., Lin, Y.: Normalized word embedding and orthogonal transform for bilingual word translation. In: HLT-NAACL, pp. 1006–1011 (2015)Google Scholar
- 25.Zou, W.Y., Socher, R., Cer, D.M., Manning, C.D.: Bilingual word embeddings for phrase-based machine translation. In: EMNLP, pp. 1393–1398 (2013)Google Scholar