Global RDF Vector Space Embeddings

  • Michael CochezEmail author
  • Petar Ristoski
  • Simone Paolo Ponzetto
  • Heiko Paulheim
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10587)


Vector space embeddings have been shown to perform well when using RDF data in data mining and machine learning tasks. Existing approaches, such as RDF2Vec, use local information, i.e., they rely on local sequences generated for nodes in the RDF graph. For word embeddings, global techniques, such as GloVe, have been proposed as an alternative. In this paper, we show how the idea of global embeddings can be transferred to RDF embeddings, and show that the results are competitive with traditional local techniques like RDF2Vec.


Graph embeddings Linked open data Data mining 



The work presented in this paper has been partially funded by the Junior-professor funding programme of the Ministry of Science, Research and the Arts of the state of Baden-Württemberg (project “Deep semantic models for high-end NLP application”), and by the German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD).


  1. 1.
    Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing. Internet Math. 3(1), 41–62 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)Google Scholar
  3. 3.
    Cochez, M., Ponzetto, S.P., Paulheim, H.: Biased graph walks for RDF graph embeddings. In: WIMS (2017)Google Scholar
  4. 4.
    Demšar, J.: Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7, 1–30 (2006)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121–2159 (2011)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based explicit semantic analysis. In: IJCAI, pp. 1606–1611 (2007)Google Scholar
  7. 7.
    Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: KDD, pp. 855–864 (2016)Google Scholar
  8. 8.
    Hassan, S., Mihalcea, R.: Semantic relatedness using salient semantic analysis. In: AAAI, pp. 884–889 (2011)Google Scholar
  9. 9.
    Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The Eigentrust algorithm for reputation management in P2P networks. In: WWW, pp. 640–651 (2003)Google Scholar
  10. 10.
    Klein, P., Ponzetto, S.P., Glavaš, G.: Improving neural knowledge base completion with cross-lingual projections. In: EACL, vol. 2, pp. 516–522 (2017)Google Scholar
  11. 11.
    Lee, M., Pincombe, B., Welsh, M.: An empirical evaluation of models of text document similarity. Cogn. Sci. Soc. 27, 1254–1259 (2005)Google Scholar
  12. 12.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - A large-scale. Multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6, 167–195 (2013)Google Scholar
  13. 13.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)Google Scholar
  14. 14.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  15. 15.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: IMC, pp. 29–42 (2007)Google Scholar
  16. 16.
    Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)CrossRefGoogle Scholar
  17. 17.
    Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML, pp. 809–816 (2011)Google Scholar
  18. 18.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999–66, Stanford InfoLab, November 1999Google Scholar
  19. 19.
    Paul, C., Rettinger, A., Mogadala, A., Knoblock, C.A., Szekely, P.: Efficient graph-based document similarity. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 334–349. Springer, Cham (2016). doi: 10.1007/978-3-319-34129-3_21 CrossRefGoogle Scholar
  20. 20.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP 2014, pp. 1532–1543 (2014)Google Scholar
  21. 21.
    Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD, pp. 701–710 (2014)Google Scholar
  22. 22.
    Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016). doi: 10.1007/978-3-319-46523-4_30 CrossRefGoogle Scholar
  23. 23.
    Ristoski, P., de Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for systematic evaluations of machine learning on the semantic web. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 186–194. Springer, Cham (2016). doi: 10.1007/978-3-319-46547-0_20 CrossRefGoogle Scholar
  24. 24.
    Rosati, J., Ristoski, P., Di Noia, T., Leone, R.D., Paulheim, H.: RDF graph embeddings for content-based recommender systems. In: CEUR Workshop Proceedings, vol. 1673, pp. 23–30. RWTH (2016)Google Scholar
  25. 25.
    Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Commun. ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  26. 26.
    Schnabel, T., Labutov, I., Mimno, D.M., Joachims, T.: Evaluation methods for unsupervised word embeddings. In: EMNLP, pp. 298–307 (2015)Google Scholar
  27. 27.
    Schuhmacher, M., Ponzetto, S.P.: Knowledge-based graph document modeling. In: WSDM, pp. 543–552 (2014)Google Scholar
  28. 28.
    Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor networks for knowledge base completion. In: NIPS, pp. 926–934 (2013)Google Scholar
  29. 29.
    Thalhammer, A., Rettinger, A.: PageRank on Wikipedia: towards general importance scores for entities. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 227–240. Springer, Cham (2016). doi: 10.1007/978-3-319-47602-5_41 CrossRefGoogle Scholar
  30. 30.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI, pp. 1112–1119 (2014)Google Scholar
  31. 31.
    Yanardag, P., Vishwanathan, S.: Deep graph kernels. In: KDD, pp. 1365–1374 (2015)Google Scholar
  32. 32.
    Zhang, Z., Gentile, A.L., Ciravegna, F.: Recent advances in methods of lexical semantic relatedness - a survey. Nat. Lang. Eng. 19(4), 411–479 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Michael Cochez
    • 1
    • 2
    • 3
    Email author
  • Petar Ristoski
    • 4
  • Simone Paolo Ponzetto
    • 4
  • Heiko Paulheim
    • 4
  1. 1.Fraunhofer FITSankt AugustinGermany
  2. 2.Informatik 5RWTH University AachenAachenGermany
  3. 3.Faculty of Information TechnologyUniversity of JyvaskylaJyväskyläFinland
  4. 4.Data and Web Science GroupUniversity of MannheimMannheimGermany

Personalised recommendations