Skip to main content

An Integration of Least Squares Support Vector Machines and Firefly Optimization Algorithm for Flood Susceptible Modeling Using GIS

Abstract

The main aim of this research is to propose and evaluate a new hybrid intelligent approach (namely LSSVM-FA) based on Least Squared Support Vector Machines (LSSVM) and Firefly algorithm (FA) for flood susceptible modeling with a case study at a typical flood region in Central Vietnam. LSSVM and FA are current state-of-the art machine learning techniques that have rarely been explored for flood study. For this aim, a geospatial database of flood for the study area was constructed that consists of 76 historical flooded locations and 10 influencing factors. Using the database, the flood model was established using LSSVM, and then, the model was optimized where the best model’s parameters were determined using FA. The goodness-of-fit and the prediction capability of the proposed model were evaluated using Receiver Operating Characteristic (ROC) curve and area under the ROC curve (AUC). The results showed that the proposed model performs well with the training data (AUC = 0.961) and the validation data (AUC = 0.934). Since the proposed model is better than benchmarks i.e. Neuron-fuzzy, support vector machines, and random forest, it could be concluded that the proposed model is a promising tool that should be used for flood modeling. The result from this research is useful for land-use planning and management at flood-prone areas.

Keywords

  • Flood
  • Least-squares support vector machines
  • Firefly algorithm
  • Vietnam

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68240-2_4
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68240-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Werner, M.: A comparison of flood extent modelling approaches through constraining uncertainties on gauge data. Hydrol. Earth Syst. Sci. 8, 1141–1152 (2004)

    CrossRef  Google Scholar 

  2. Vojinovic, Z., Hammond, M., Golub, D., Hirunsalee, S., Weesakul, S., Meesuk, V., Medina, N., Sanchez, A., Kumara, S., Abbott, M.: Holistic approach to flood risk assessment in areas with cultural heritage: a practical application in Ayutthaya. Thai. Nat. Hazards 81, 589–616 (2016)

    CrossRef  Google Scholar 

  3. Nguyen, P.K.-T., Chua, L.H.-C., Son, L.H.: Flood forecasting in large rivers with data-driven models. Nat. Hazards 71, 767–784 (2014)

    CrossRef  Google Scholar 

  4. Tiwari, M.K., Chatterjee, C.: Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. J. Hydrol. 394, 458–470 (2010)

    CrossRef  Google Scholar 

  5. Fekete, A.: Validation of a social vulnerability index in context to river-floods in Germany. Nat. Hazards Earth Syst. Sci. 9, 393–403 (2009)

    CrossRef  Google Scholar 

  6. Seckin, N., Cobaner, M., Yurtal, R., Haktanir, T.: Comparison of artificial neural network methods with L-moments for estimating flood flow at ungauged sites: the case of East Mediterranean River Basin. Turk. Water Res. Manage. 27, 2103–2124 (2013)

    CrossRef  Google Scholar 

  7. Sattari, M.T., Pal, M., Apaydin, H., Ozturk, F.: M5 model tree application in daily river flow forecasting in Sohu stream. Turk. Water Res. 40, 233–242 (2013)

    CrossRef  Google Scholar 

  8. Tehrany, M.S., Pradhan, B., Jebur, M.N.: Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. J. Hydrol. 512, 332–343 (2014)

    CrossRef  Google Scholar 

  9. Kazakis, N., Kougias, I., Patsialis, T.: Assessment of flood hazard areas at a regional scale using an index-based approach and analytical hierarchy process: application in rhodope-evros region, Greece. Sci. Total Environ. 538, 555–563 (2015)

    CrossRef  Google Scholar 

  10. Liu, K., Li, Z., Yao, C., Chen, J., Zhang, K., Saifullah, M.: Coupling the k-nearest neighbor procedure with the Kalman filter for real-time updating of the hydraulic model in flood forecasting. Int. J. Sedim. Res. (2016)

    Google Scholar 

  11. Tien Bui, D., Pradhan, B., Nampak, H., Quang Bui, T., Tran, Q.-A., Nguyen, Q.P.: Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modelling in a high-frequency tropical cyclone area using GIS. J. Hydrol. 540, 317–330 (2016)

    CrossRef  Google Scholar 

  12. Tehrany, M.S., Pradhan, B., Mansor, S., Ahmad, N.: Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. CATENA 125, 91–101 (2015)

    CrossRef  Google Scholar 

  13. Chapi, K., Singh, V.P., Shirzadi, A., Shahabi, H., Bui, D.T., Pham, B.T., Khosravi, K.: A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environ. Model Softw. 95, 229–245 (2017)

    CrossRef  Google Scholar 

  14. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9, 293–300 (1999)

    CrossRef  Google Scholar 

  15. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)

    Google Scholar 

  16. Wang, S.-Y.S., Promchote, P., Truong, L.H., Buckley, B., Li, R., Gillies, R., Trung, N.T.Q., Guan, B., Minh, T.T.: Changes in the autumn precipitation and tropical cyclone activity over central Vietnam and its east sea. Vietnam J. Earth Sci. 36, 489–496 (2015)

    Google Scholar 

  17. Qi, S., Brown, D.G., Tian, Q., Jiang, L., Zhao, T., Bergen, K.M.: Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. GISci. Remote Sens. 46, 101–127 (2009)

    CrossRef  Google Scholar 

  18. Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., Bai, X.: Flood hazard risk assessment model based on random forest. J. Hydrol. 527, 1130–1141 (2015)

    CrossRef  Google Scholar 

  19. Glenn, E.P., Morino, K., Nagler, P.L., Murray, R.S., Pearlstein, S., Hultine, K.R.: Roles of saltcedar (Tamarix spp.) and capillary rise in salinizing a non-flooding terrace on a flow-regulated desert river. J. Arid Environ. 79, 56–65 (2012)

    CrossRef  Google Scholar 

  20. Tucker, C., Sellers, P.: Satellite remote sensing of primary production. Int. J. Remote Sens. 7, 1395–1416 (1986)

    CrossRef  Google Scholar 

  21. Džubáková, K., Molnar, P., Schindler, K., Trizna, M.: Monitoring of riparian vegetation response to flood disturbances using terrestrial photography. Hydrol. Earth Syst. Sci. 19, 195–208 (2015)

    CrossRef  Google Scholar 

  22. Heitmuller, F.T., Hudson, P.F., Asquith, W.H.: Lithologic and hydrologic controls of mixed alluvial–bedrock channels in flood-prone fluvial systems: Bankfull and macrochannels in the Llano River watershed, central Texas, USA. Geomorphology 232, 1–19 (2015)

    CrossRef  Google Scholar 

  23. Suykens, J., Gestel, J.V., Brabanter, J.D., Moor, B.D., Vandewalle, J.: Least Square Support Vector Machines. World Scientific Publishing Co. Pte. Ltd, Singapore (2002)

    CrossRef  Google Scholar 

  24. Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B.: Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis. In: iEMSs 2012 - Managing Resources of a Limited Planet: Proceedings of the 6th Biennial Meeting of the International Environmental Modelling and Software Society, pp. 382–389 (Year)

    Google Scholar 

  25. Tien Bui, D., Anh Tuan, T., Hoang, N.-D., Quoc Thanh, N., Nguyen, B.D., Van Liem, N., Pradhan, B.: Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a novel hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization, Landslides (2016). doi:10.1007/s10346-016-0711-9

  26. Yang, X.-S.: Nature-Inspired Computation in Engineering. Springer (2016)

    Google Scholar 

  27. De Brabanter, K., Karsmakers, P., Ojeda, F., Alzate, C., De Brabanter, J., Pelckmans, K., De Moor, B., Van de Walle, J., Suykens, J.: LS-SVMlab toolbox user’s guide. ESAT-SISTA Technical report, pp. 10–146 (2011)

    Google Scholar 

  28. Tien Bui, D., Pradhan, B., Lofman, O., Revhaug, I., Dick, O.B.: Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 45, 199–211 (2012)

    CrossRef  Google Scholar 

  29. Tien Bui, D., Le, K.-T., Nguyen, V., Le, H., Revhaug, I.: Tropical forest fire susceptibility mapping at the cat ba national park area, Hai Phong city, Vietnam, using GIS-based kernel logistic regression. Remote Sens. 8, 347 (2016)

    CrossRef  Google Scholar 

  30. Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. Wiley, Hoboken (2011)

    CrossRef  Google Scholar 

Download references

Acknowledgement

This research was supported by the Geographic Information System group, University College of Southeast Norway. The data for this research was provided by the Project No. B2014-02-21 (Ministry of Education and Training, Vietnam).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieu Tien Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Nguyen, VN. et al. (2018). An Integration of Least Squares Support Vector Machines and Firefly Optimization Algorithm for Flood Susceptible Modeling Using GIS. In: Tien Bui, D., Ngoc Do, A., Bui, HB., Hoang, ND. (eds) Advances and Applications in Geospatial Technology and Earth Resources. GTER 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-68240-2_4

Download citation