Skip to main content

Plant-Herbivore Networks in the Tropics

  • Chapter
  • First Online:
Ecological Networks in the Tropics

Abstract

Understanding the patterns and processes behind the high biological diversity of tropical ecosystems has been one of the most important issues in modern ecology. Plant-herbivore interactions constitute an important percentage of biodiversity in the tropics, and their ecological and evolutionary importance has been demonstrated in a large number of studies. However, it is only very recently that plant-herbivore antagonistic interactions are being addressed from the perspective of complex networks to evaluate how different factors influence their interaction patterns. In this chapter, we provide a summary of the processes that have been reported shaping the specialization and structuring of tropical plant-herbivore networks. From the limited availability of studies in such habitats we suggest that plant-herbivore networks are spatiotemporally dynamic and are the result of multiple non-exclusive processes where seasonality, variation in resource availability, habitat type, disturbance regime and species-specific attributes contribute to structuring these highly diverse and specialized antagonistic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal AA (2007) Macroevolution of plant defense strategies. Trends Ecol Evol 22:103–109

    Article  PubMed  Google Scholar 

  • Augustyn WJ, Anderson B, Ellison AG (2016) Experimental evidence for fundamental, and not realized, niche partitioning in a plant–herbivore community interaction network. J Anim Ecol 85:994–1003

    Article  PubMed  Google Scholar 

  • Bagchi R, Gallery RE, Gripenberg S (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88

    Article  CAS  PubMed  Google Scholar 

  • Barbour MA, Fortuna MA, Bascompte J et al (2016) Genetic specificity of a plant–insect food web: implications for linking genetic variation to network complexity. Proc Natl Acad Sci U S A 113:2128–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593

    Article  Google Scholar 

  • Basset Y, Hammond PM, Barrios H et al (2003) Vertical stratification of arthropod assemblages. In: Basset Y, Novotny V, Miller SE, Kitching RL (eds) Arthropods of tropical forests–spatio-temporal dynamics and resource use in the canopy. Cambridge University Press, Cambridge, pp 17–27

    Google Scholar 

  • Barlow J, Overal WL, Arauyjo IS et al (2007) The value of primary, secondary and plantation forests for fruit-feeding butterflies in the Brazilian Amazon. J Appl Ecol 44:1001–1012

    Article  Google Scholar 

  • Becerra JX (2007) The impact of herbivore plant coevolution on plant community structure. Proc Natl Acad Sci US A 104 (18) 7483–7488

    Google Scholar 

  • Becerra JX (1997) Insects on plants: macroevolutionary chemical trends in host use. Science 276:253–256

    Article  CAS  PubMed  Google Scholar 

  • Becerra JX (2015) On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc Natl Acad Sci U S A 112(19):6098–6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck JA, Khen CV (2007) Beta-diversity of geometrid moths from northern Borneo: effects of habitat, time and space. J Anim Ecol 76:230–237

    Article  PubMed  Google Scholar 

  • Benítez-Malvido J, Dáttilo W (2015) Interaction intimacy of pathogens and herbivores with their host plants influences the topological structure of ecological networks in different ways. Am J Bot 102(4) 512–519

    Google Scholar 

  • Benítez-Malvido J, Martínez-Falcón AP, Dáttilo W, del-Val E (2014) Diversity and network structure of invertebrate communities associated to Heliconia species in natural and human disturbed tropical rain forests. Global Ecol Conserv 2:107–117

    Article  Google Scholar 

  • Benítez-Malvido J, Dáttilo W (2015) Interaction intimacy of pathogens and herbivores with their plant hosts influences the topological structure of ecological networks in different ways. Am J Bot 102(4):1–8

    Article  Google Scholar 

  • Benítez-Malvido J, Dáttilo W, Martínez-Falcón AP et al (2016) The multiple impacts of tropical forest fragmentation on arthropod biodiversity and on their patterns of interactions with host plants. PLoS One 11(1):e0146461

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergamini LL, Lewinsohn TM, Jorge LR et al (2016) Manifold influences of phylogenetic structure on a plant – herbivore network. Oikos 126(5):703–712

    Article  Google Scholar 

  • Boege K, Marquis R (2006) Plant quality and predation risk mediated by plant ontogeny: consequences for herbivores and plants. Oikos 115:559–572

    Article  Google Scholar 

  • Cagnolo L, Salvo A, Valladares G (2011) Network topology: patterns and mechanisms in plant-herbivore and host-parasitoid food webs. J Anim Ecol 80:342–351

    Article  PubMed  Google Scholar 

  • Coley PD (1998) Possible effects of climate change on plant/herbivore interactions in moist tropical forests. In: Markham A (ed) Potential impacts of climate change on tropical forest ecosystems. Springer, Netherlands, pp 315–332

    Chapter  Google Scholar 

  • Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annu Rev Ecol Syst 27:305–335

    Article  Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Article  Google Scholar 

  • de Araújo WS, Costa-Vieira MC, Lewinsohn TM et al (2015) Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks. PLoS One 10:e0115606

    Article  PubMed  PubMed Central  Google Scholar 

  • Dirzo R, Boege K (2008) Patterns of herbivory and defense in tropical dry and rain forests. In: Walter C, Schnitzer S (eds) Tropical forest community ecology. Blackwell Science, Oxford

    Google Scholar 

  • Dyer LA, Singer MS, Lill JT et al (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696–699

    Article  CAS  PubMed  Google Scholar 

  • Eben A, Espinosa de los Monteros A (2015) Trophic interaction network and the evolutionary history of Diabroticina beetles (Chrysomelidae: Galerucinae). J Appl Entomol 139:468–477

    Article  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Erwin TL (1991) How many species are there? Conserv Biol 5:330–333

    Article  Google Scholar 

  • Fordyce JA, Nice CC, Hamm CA et al (2016) Quantifying diet breadth through ordination of host association. Ecology 97:842–849

    Article  CAS  PubMed  Google Scholar 

  • Forister ML, Novotny AK, Panorska L et al (2015) The global distribution of diet breadth in insect herbivores. Proc Natl Acad Sci U S A 112:442–447

    Article  CAS  PubMed  Google Scholar 

  • Funk DJ, Futuyma DJ, Orti G et al (1995) A history of host association and evolutionary diversification for Ophraella (Coleoptera: Chrysomelidae): new evidence from mitochondrial DNA. Evolution 49:1008–1017

    Article  CAS  PubMed  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Futuyma DJ, Agrawal AA (2009) Macroevolution and the biological diversity of plants and herbivores. Proc Natl Acad Sci U S A 84:8054–18061

    Google Scholar 

  • García-Robledo C, Erickson DL, Staines CL et al (2013) Tropical plant–herbivore networks: reconstructing species interactions using DNA barcodes. PLoS One 8:e52967

    Article  PubMed  PubMed Central  Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? Ann Mo Bot Gard 69:557–593

    Article  Google Scholar 

  • Gentry AH (1989) Speciation in tropical forests. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic, San Diego, pp 113–134

    Chapter  Google Scholar 

  • Grimmbacher PS, Stork NE (2009) How do beetle assemblages respond to cyclonic disturbance of a fragmented tropical rainforest landscape? Oecologia 161:591–599

    Article  Google Scholar 

  • Haddad NM, Crutsinger GM, Gross K et al (2011) Plant diversity and the stability of foodwebs. Ecol Lett 14:42–46

    Article  PubMed  Google Scholar 

  • Hawes J, Silva MC, Overal WL et al (2009) Diversity and composition of Amazonian moths in primary, secondary and plantation forests. J Trop Ecol 25:281–300

    Article  Google Scholar 

  • Janz N, Nyblom K, Nylin S (2001) Evolutionary dynamics of host-plant specialization: a case study of the tribe Nymphalini. Evolution 55:783–796

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1993) Caterpillar seasonality in a costa Rican dry forest. In: Stamp NE, Casey TM (eds) Caterpillars. Ecological and evolutionary constraints on foraging, New York, Chapman and Hall Inc, pp 448–477

    Google Scholar 

  • Janzen DH (1970) Herbivory and the number of trees species in tropical forests. Am Nat 104:501–528

    Article  Google Scholar 

  • Kemp JE, Evans DM, Augustyn W et al (2016) Invariant antagonistic network structure despite high spatial and temporal turnover of species and their interactions in a biodiversity hotspot. Ecography 17:72

    Google Scholar 

  • Kempel A, Razanajatovo M, Stein C et al (2015) Herbivore preference drives plant community composition. Ecology 96:2923–2934

    Article  PubMed  Google Scholar 

  • Kursar TA, Dexter KG, Lokvam J et al (2009) The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proc Natl Acad Sci U S A 106:18073–18078

    Google Scholar 

  • Lau MK, Keith AR, Borrett SR et al (2016) Genotypic variation in foundation species generates network structure that may drive community dynamics and evolution. Ecology 97:733–742

    PubMed  Google Scholar 

  • Lewinsohn TM, Novotny V, Basset Y (2005) Insects on plants: diversity of herbivore assemblages revisited. Annu Rev Ecol Evol Syst 36:597–620

    Article  Google Scholar 

  • Lewinsohn TM, Prado I, Jordano P et al (2006) Structure in plant-animal interaction assemblages. Oikos 113:174–184

    Article  Google Scholar 

  • Lewinsohn TM, Roslin T (2008) Four ways towards tropical herbivore megadiversity. Ecol Lett 11:398–416

    Article  PubMed  Google Scholar 

  • López-Carretero A, Díaz-Castelazo C, Boege K et al (2014) Evaluating the spatio-temporal factors that structure network parameters of plant-herbivore interactions. PLoS One 9:e110430

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Carretero A, Boege K, Díaz-Castelazo C et al (2016) Influence of plant resistance traits in selectiveness and species strength in a tropical plant-herbivore network. Am J Bot 103:1436–1448

    Article  PubMed  Google Scholar 

  • Maron JL, Kauffman MJ (2006) Habitat-specific impacts of multiple consumers on plant population dynamics. Ecology 87:113–124

    Article  PubMed  Google Scholar 

  • Marquis RJ (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226(4674):537–539

    Article  Google Scholar 

  • Meskens C, Mckenna D, Hance T et al (2011) Host plant taxonomy and phenotype influence the structure of a neotropical host plant–hispine beetle food web. Ecol Entomol 36:480–489

    Article  Google Scholar 

  • Metcalf RL (1986) Coevolutionary adaptations of rootworm beetles (Coleoptera: Chrysomelidae) to cucurbitacins. J Chem Ecol 12:1109–1124

    Article  CAS  PubMed  Google Scholar 

  • Neves FS, Silva JO, Espírito-Santo MM et al (2014) Insect herbivores and leaf damage along successional and vertical gradients in a tropical dry forest. Biotropica 46:14–24

    Article  Google Scholar 

  • Novotny V, Basset Y, Miller SE et al (2002) Low host specificity of herbivorous insects in a tropical forest. Nature 416:841–844

    Article  CAS  PubMed  Google Scholar 

  • Novotny V, Basset SEM, Kitching RL, Laidlaw M, Drozd P, Cizek L (2004) Local species richness of leaf-chewing insects feeding on woody plants one hectare of a lowland rainforest. Conserv Biol 18:227–237

    Article  Google Scholar 

  • Novotny V, Basset Y (2005) Host specificity of insect herbivores in tropical forests. Proc R Soc Lond Biol 272:1083–1090

    Article  Google Scholar 

  • Novotny V, Drozd P, Miller SE et al (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Novotny V, Miller E, Baje L et al (2010) Guild specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  • Novotny V, Miller SE (2014) Mapping and understanding the diversity of insects in the tropics: past achievements and future directions. Austral Entomol 53:259–267

    Article  Google Scholar 

  • Osborn H (1935) Insects of Puerto Rico and the Virgin Islands: Homoptera (excepting the Sternorhynchi). N Y Acad Sci 14:111–260

    Google Scholar 

  • Pearse IS, Hipp AL (2012) Global patterns of leaf defenses in oak species. Evolution 66:2272–2286

    Article  PubMed  Google Scholar 

  • Peralta G (2016) Merging evolutionary history into species interaction networks. Funct Ecol 30:1817–1925

    Article  Google Scholar 

  • Pires MM, Guimarães PR (2012) Interaction intimacy organizes networks of antagonistic interactions in different ways. J R Soc Interface 10:20120649

    Article  PubMed  Google Scholar 

  • Prado PI, Lewinsohn TM (2004) Compartments in insect-plant associations and their consequences for community structure. J Anim Ecol 73:1168–1178

    Article  Google Scholar 

  • Price PW (2002) Resource-driven terrestrial interaction webs. Ecol Res 17:241–247

    Article  Google Scholar 

  • Rausher MD, Feeny P (1980) Herbivory, plant density, and plant reproductive success: the effect of Battus philenor on Aristolochia reticulata. Ecology 61:905–917

    Article  Google Scholar 

  • Ribeiro S, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:663–672

    Article  Google Scholar 

  • Richards LA, Dyer LA, Forister ML et al (2015) Phytochemical diversity drives plant–insect community diversity. Proc Natl Acad Sci U S A 112:10973–10978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sauve A, Fontaine C, Thébault E (2014) Structure–stability relationships in networks combining mutualistic and antagonistic interactions. Oikos 123:378–384

    Article  Google Scholar 

  • Scherrer S, Lepesqueur C, Vieira MC et al (2016) Seasonal variation in diet breadth of folivorous Lepidoptera in the Brazilian cerrado. Biotropica 48:491–498

    Article  Google Scholar 

  • Staab M, Blüthgen N, Klein AM (2015) Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. Oikos 124:827–834

    Article  Google Scholar 

  • Stork NE (2007) Biodiversity: world of insects. Nature 448:657–658

    Article  CAS  PubMed  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  Google Scholar 

  • Thompson JN (1982) Interaction and coevolution. John Wiley and Sons, New York

    Book  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago, IL

    Book  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation leads to food web contraction. Oikos 121:299–305

    Article  Google Scholar 

  • Valladares G, Salvo A, Cagnolo L (2006) Habitat fragmentation effects on trophic processes of insect-plant food webs. Conserv Biol 20:212–217

    Article  PubMed  Google Scholar 

  • Van Bael SA, Brawn JD, Robinson SK (2003) Birds defend trees from herbivores in a Neotropical forest canopy. Proc Natl Acad Sci U S A 100:8304 8307

    PubMed Central  Google Scholar 

  • Villa-Galaviz E, Boege K, del-Val E (2012) Resilience in plant-herbivore networks during secondary succession. PLoS One 7(12):e53009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volf M, Pyszko P, Abe T et al (2017) Phylogenetic composition of the host plant communities drives plant-herbivore food web structure. J Anim Ecol, vol 86, p 556. https://doi.org/10.1111/1365-2656.12646

    Google Scholar 

  • Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardhaugh CW, Edwards W, Stork NE (2014) The specialization and structure of antagonistic and mutualistic networks of beetles on rainforest canopy trees. Biol J Linn Soc 114:287–295

    Article  Google Scholar 

  • Weiblen GD, Webb CO, Novotny V et al (2006) Phylogenetic dispersion of host use in a tropical insect herbivore community. Ecology 87:S62–S75

    Article  PubMed  Google Scholar 

  • Whitham TG et al (2006) A framework for community and ecosystem genetics: from genes to ecosystems. Nat Rev Genet 7:510–523

    Article  CAS  PubMed  Google Scholar 

  • Wolcott GN (1941) The dispersion of the cottony cushion-scale in Puerto Rico in eight years. Caribbean Forester 2:132–135

    Google Scholar 

Download references

Acknowledgements

While writing the manuscript, EDV and KB were funded by PAPIIT-UNAM IN211916, SEP CONACYT 2015-255544 and ALC by PDTS 2600/14 (CONICET). KB acknowledges logistic support by Rubén Pérez-Ishiwara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio López-Carretero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Carretero, A., del-Val, E., Boege, K. (2018). Plant-Herbivore Networks in the Tropics. In: Dáttilo, W., Rico-Gray, V. (eds) Ecological Networks in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-319-68228-0_8

Download citation

Publish with us

Policies and ethics