Skip to main content

Ecology and Evolution of Species-Rich Interaction Networks

  • Chapter
  • First Online:
Ecological Networks in the Tropics

Abstract

The perception that the complexity of tropical ecological interactions is both a product of evolutionary processes and a feedstock for evolution lies at the origin of Evolutionary Ecology. We now have the opportunity to revisit this foundational perception to gain insight into the processes shaping biodiversity structure and ecosystem functioning. Such an opportunity arises from the ongoing theoretical integration between ecological and evolutionary theories, alongside with the application of the network approach to characterize the structure and dynamics of multi-species communities. In this chapter, we focus on the fundamental aspects of ecological, evolutionary, and eco-evolutionary theories underlying the network approach to the study of multi-species systems, such as megadiverse tropical communities. Together, these perspectives illustrate the challenges we shall face in the decades to come in order to take advantage of ongoing theoretical integration, the gradual accumulation of data on tropical interactions, and the availability of robust analytical and computational tools to enlighten the processes shaping biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams PA (1996) Evolution and the consequences of species introductions and deletions. Ecology 77:1321–1328

    Article  Google Scholar 

  • Abrams PA (2005) ‘Adaptive dynamics’ vs. ‘adaptive dynamics’. J Evol Biol 5:1162–1165

    Article  Google Scholar 

  • Abrams PA (2010) Implications of flexible foraging for interspecific interactions: lessons from simple models. Funct Ecol 24:7–17

    Article  Google Scholar 

  • Abrams PA, Cortez MH (2015) Is competition needed for ecological character displacement? Does displacement decrease competition? Evolution 69:3039–3053

    Article  PubMed  PubMed Central  Google Scholar 

  • Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134

    Article  PubMed  Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    Article  CAS  PubMed  Google Scholar 

  • Andreazzi CS, Thompson JN, Guimarães PR Jr (2017) Network structure and selection asymmetry drive coevolution in species-rich antagonistic interactions. Am Nat 190(1):99–115

    Article  PubMed  Google Scholar 

  • Barraclough TG (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu Rev Ecol Evol Syst 46:25–48

    Article  Google Scholar 

  • Bascompte J, Jordano P (2014) Mutualistic networks. Princeton University Press, Princeton

    Google Scholar 

  • Bascompte J, Jordano P, Melián CJ et al (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-García et al (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    Google Scholar 

  • Becks L, Ellner P, Jones LE, Hairston NG (2010) Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol Lett 13:989–997

    PubMed  Google Scholar 

  • Bronstein JL (2009) Mutualism and symbiosis. In: Levin S (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 233–238

    Google Scholar 

  • Carroll S, Hendry APP, Reznick DN, Fox C (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393

    Article  Google Scholar 

  • Cook JM, Rasplus J-Y (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248

    Article  Google Scholar 

  • Darwin CR (1859) On the origin of species by means of natural selection. J. Murray, London

    Google Scholar 

  • Darwin C, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool J Linnean Soc 3:46–50

    Google Scholar 

  • Dáttilo W (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Netw Biol 2:127–138

    Google Scholar 

  • Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2014a) Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biol J Linn Soc 113:405–414

    Article  Google Scholar 

  • Dáttilo W, Sánchez-Gálvan I, Lange D et al (2014b) Importance of interaction frequency in analysis of ant-plant networks in tropical environments. J Trop Ecol 30:165–168

    Article  Google Scholar 

  • Dáttilo W, Lara-Rodríguez N, Jordano P et al (2016) Unraveling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc Biol Sci 283:20161564

    Google Scholar 

  • Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR et al (2013) Long-term temporal variation in the organization of an ant–plant network. Ann Bot 111:1285–1293

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  CAS  PubMed  Google Scholar 

  • Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 27–86

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Ellner SP, Geber MA, Hairston NG (2011) Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett 14:603–614

    Article  PubMed  Google Scholar 

  • Encinas-Viso F, Melian CJ, Etienne RS (2014) The emergence of network structure, complementarity and convergence from basic ecological and genetic processes. bioRxiv. doi:https://doi.org/10.1101/007393

  • Evans DM, Kitson JJN, Lunt DH et al (2016) Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol 30:1904–1916

    Article  Google Scholar 

  • Fonseca CR, Ganade G (1996) Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J Anim Ecol 65:339–347

    Article  Google Scholar 

  • Fontaine C, Guimarães PR Jr, Kéfi S et al (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181

    Article  PubMed  Google Scholar 

  • Fox JW, Vasseur DA (2008) Character convergence under competition for nutritionally essential resources. Am Nat 172:667–680

    Article  PubMed  Google Scholar 

  • Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci U S A 104:1278–1282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol 21:465–477

    Article  Google Scholar 

  • Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Gause G (1932) Experimental studies on the struggle for existence. J Exp Biol 9:389–402

    Google Scholar 

  • Gómez JM, Perfectti F, Bosch J et al (2009) A geographic selection mosaic in a generalized plant-pollinator-herbivore system. Ecol Monogr 79:245–263

    Article  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  CAS  PubMed  Google Scholar 

  • Grant PR, Grant BR (2014) 40 years of evolution: Darwin’s finches on Daphne Major Island. Princeton University Press, Princeton

    Book  Google Scholar 

  • Gravel D, Massol F, Leibold MAA (2016) Stability and complexity in model meta-ecosystems. Nat Commun 7:12457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grilli J, Roger T, Allesina S (2016) Modularity and stability in ecological communities. Nat Commun 7:12031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259–271

    Article  PubMed  Google Scholar 

  • Guimarães PR Jr, Rico-Gray V, Oliveira PS et al (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803

    Article  PubMed  CAS  Google Scholar 

  • Guimarães PR Jr, Pires MM, Marquitti FMD et al (2016) Ecology of mutualisms. eLS. Wiley, Hoboken

    Google Scholar 

  • Hairston NG, Ellner SP, Geber MA et al (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127

    Article  Google Scholar 

  • Haloin JR, Strauss SY (2008) Interplay between ecological communities and evolution: review of feedbacks from microevolutionary to macroevolutionary scales. Ann N Y Acad Sci 1133:87–125

    Article  PubMed  Google Scholar 

  • Hansen DM, Galetti M (2009) The forgotten megafauna. Science 324:42–43

    Article  CAS  PubMed  Google Scholar 

  • Hembry D (2012) Coevolutionary diversification of leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in southeastern Polynesia. Ph.D. Thesis, University of California, Berkeley

    Google Scholar 

  • Hendry AP (2016) Eco-evolutionary dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Hutchinson GE (1965) The ecological theater and the evolutionary play. Yale University Press, New Haven

    Google Scholar 

  • Johnson MTJ, Agrawal AA (2005) Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 86:874–885

    Article  Google Scholar 

  • Jones EI, Ferrière RG, Bronstein JL (2009) Eco-evolutionary dynamics of mutualists and exploiters. Am Nat 174:780–794

    PubMed  Google Scholar 

  • Jones EI, Bronstein JL, Ferrière R (2012) The fundamental role of competition in the ecology and evolution of mutualisms. Ann N Y Acad Sci 1256:66–88

    Article  PubMed  Google Scholar 

  • Jordano P, Bascompte J, Olesen J (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Kaiser-Bunbury CN, Muff S, Memmott JJ et al (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452

    Article  PubMed  Google Scholar 

  • Kaiser-Bunbury CN, Mougal J, Whittington AE et al (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–227

    Article  CAS  PubMed  Google Scholar 

  • Kang Y, Wedekin LJ (2013) Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol 67:1227–1259

    Article  PubMed  Google Scholar 

  • Kinnison MT, Hairston NG, Hendry AP (2015) Cryptic eco-evolutionary dynamics. Ann N Y Acad Sci 1360:120–144

    Article  PubMed  Google Scholar 

  • Koch H, Frickel J, Valiadi M, Becks L (2014) Why rapid, adaptive evolution matters for community dynamics. Front Ecol Evol 2:17

    Article  Google Scholar 

  • Kolchinsky A, Gates AJ, Rocha LM (2015) Modularity and the spread of perturbations in complex dynamical systems. Phys Rev E 92:060801

    Article  CAS  Google Scholar 

  • Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334

    Google Scholar 

  • Loeuille N (2010) Influence of evolution on the stability of ecological communities. Ecol Lett 13:1536–1545

    Article  PubMed  Google Scholar 

  • Losos JB, Arnold SJ, Bejerano G et al (2013) Evolutionary biology for the 21st century. PLoS Biol 11:e1001466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci U S A 6:410–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lurgi M, Montoya D, Montoya JM (2016) The effects of space and diversity of interaction types on the stability of complex ecological networks. Theor Ecol 9:3–13

    Article  Google Scholar 

  • Lush JL (1943) Animal breeding plans. The Iowa State College Press, Ames

    Google Scholar 

  • May RM (1973) Qualitative stability in model ecosystems. Ecology 54:638–641

    Article  Google Scholar 

  • McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798

    Google Scholar 

  • McQuaid CF, Britton NF (2013) Network dynamics contribute to structure: nestedness in mutualistic networks. Bull Math Biol 75:2372–2388

    Article  PubMed  Google Scholar 

  • Memmott JJ, Waser NMN, Price MVM (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond 271:2605–2611

    Article  Google Scholar 

  • Moles AT, Ackerly DD, Webb CO et al (2005) A brief history of seed size. Science 307:576–580

    Article  CAS  PubMed  Google Scholar 

  • Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351

    Article  CAS  PubMed  Google Scholar 

  • Müller F (1879) Ituna and Thyridia; a remarkable case of mimicry in butterflies. Trans Entomol Soc London 1879:xx–xxix

    Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Nuismer SL, Gomulkiewicz R, Ridenhour BJ (2010) When is correlation coevolution? Am Nat 175:525–537

    Article  PubMed  Google Scholar 

  • Nuismer SL, Jordano P, Bascompte J (2013) Coevolution and the architecture of mutualistic networks. Evolution 67:338–354

    Article  PubMed  Google Scholar 

  • Olesen J, Bascompte J, Dupont YL et al (2007) The modularity of pollination networks. Proc Natl Acad Sci U S A 104:19891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen J, Bascompte J, Elberling H et al (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582

    Article  PubMed  Google Scholar 

  • Olesen J, Bascompte J, Dupont YL et al (2011) Missing and forbidden links in mutualistic networks. Proc R Soc Lond 278:725–732

    Article  Google Scholar 

  • Ollerton J (2006) “Biological barter”: patterns of specialization compared across different mutualisms. In: Waser NM, Ollerton J (eds) Plant pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 411–435

    Google Scholar 

  • Pacheco JM, Traulsen A, Nowak MA (2006) Coevolution of strategy and structure in complex networks with dynamical linking. Phys Rev Lett 97:258103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfennig DW, Pfennig KS (2012) Development and evolution of character displacement. Ann N Y Acad Sci 1256:89–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires MM, Guimarães PR Jr (2013) Interaction intimacy organizes networks of antagonistic interactions in different ways. J R Soc Interface 10:20120649

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires MM, Marquitti FMD, Guimarães PR Jr (2017) The friendship paradox in species-rich ecological networks: implications for conservation and monitoring. Biol Conserv 209:245–252

    Article  Google Scholar 

  • Poisot T, Stouffer DB, Gravel D (2015) Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–251

    Article  Google Scholar 

  • Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos Trans R Soc B 364:1629–1640

    Article  Google Scholar 

  • Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P et al (2012) Topological plasticity increases robustness of mutualistic networks. J Anim Ecol 81:896–904

    Article  PubMed  Google Scholar 

  • Rohr RP, Saavedra S, Bascompte J (2014) On the structural stability of mutualistic systems. Science 345:1253497

    Article  PubMed  CAS  Google Scholar 

  • Russo L, Memmott JJ, Montoya D et al (2014) Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities. Ecology 95:2953–2963

    Google Scholar 

  • Sazatornil FD, More M, Benitez-Vieyra S et al (2016) Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. J Anim Ecol 85:1586–1594

    Article  PubMed  Google Scholar 

  • Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429

    Article  CAS  PubMed  Google Scholar 

  • Siepielski AM, Benkman CW (2009) Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64:1120–1128

    Article  PubMed  Google Scholar 

  • Strauss SY (2014) Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos 123:257–266

    Article  Google Scholar 

  • Suweis S, Simini F, Banavar JR et al (2013) Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500:449–452

    Article  CAS  PubMed  Google Scholar 

  • Thebault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856

    Google Scholar 

  • Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2009) The coevolving web of life. Am Nat 173:125–140

    Article  PubMed  Google Scholar 

  • Thompson JN (2013) Relentless evolution. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Toju H, Sota T (2006) Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection. Am Nat 167:105–117

    Article  PubMed  Google Scholar 

  • Urban MCC, Skelly DK (2006) Evolving metacommunities: toward an evolutionary perspective on metacommunities. Ecology 87:1616–1626

    Article  PubMed  Google Scholar 

  • Valdovinos FS, Ramos-Jiliberto R, Flores JD et al (2009) Structure and dynamics of pollination networks: the role of alien plants. Oikos 118:1190–1200

    Article  Google Scholar 

  • Valdovinos FS, Ramos-Jiliberto R, Garay-Narváez L et al (2010) Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol Lett 13:1546–1559

    Article  PubMed  Google Scholar 

  • Valdovinos FS, Brosi BJ, Briggs HM et al (2016) Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol Lett 19:1277–1286

    Google Scholar 

  • Vasseur DA, Fox JW (2011) Adaptive dynamics of competition for nutritionally complementary resources: character convergence, displacement, and parallelism. Am Nat 178:501–514

    Article  PubMed  Google Scholar 

  • Vasseur DA, Amarasekare P, Rudolf VHW et al (2011) Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am Nat 178:E96–E109

    Article  PubMed  Google Scholar 

  • Vázquez DP, Blüthgen N, Cagnolo L et al (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445–1457

    Article  PubMed  PubMed Central  Google Scholar 

  • Vizentin-Bugoni J, Maruyama PK, Sazima M (2014) Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network. Proc R Soc Lond 281:20132397

    Article  Google Scholar 

  • Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560

    Article  Google Scholar 

  • Weitz JS, Levin SA (2006) Size and scaling of predator-prey dynamics. Ecol Lett 9:548–557

    Article  PubMed  Google Scholar 

  • Yamauchi A, Yamamura N (2005) Effects of defense and diet choice on population dynamics in one-predator-two-prey system. Ecology 86:2513–2524

    Article  Google Scholar 

  • Yeakel JD, Stiefs D, Novak M, Gross T (2011) Generalized modeling of ecological population dynamics. Theor Ecol 4:179–194

    Article  Google Scholar 

  • Yodzis P, Innes S (1992) Body-size and consumer-resource dynamics. Am Nat 139:1151–1173

    Article  Google Scholar 

Download references

Acknowledgements

The São Paulo State Research Foundation (FAPESP) supported RLGR (grant #2014/21106-4), MMP (grant #2013/22016-6), FMDM (grants 2015/11985-3 and #2016/00635-4), and PRGJr (grant #2009/54422-8). RLGR was also supported by CAPES/Brazilian Ministry of Education and PRGJr was also supported by CNPq/Brazilian Ministry of Science, Technology, and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Luís Galdini Raimundo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raimundo, R.L.G., Marquitti, F.M.D., de Andreazzi, C.S., Pires, M.M., Guimarães, P.R. (2018). Ecology and Evolution of Species-Rich Interaction Networks. In: Dáttilo, W., Rico-Gray, V. (eds) Ecological Networks in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-319-68228-0_4

Download citation

Publish with us

Policies and ethics