Skip to main content

The Structure of Ecological Networks

  • Chapter
  • First Online:
Ecological Networks in the Tropics

Abstract

Ecological networks describe species interactions in ecological processes. There is a growing number of methods for describing and analysing the interaction patterns between species in these networks. The most commonly used network-level indices, such as connectance, degree distribution, nestedness, and modularity, describe the diversity and organization of species interactions within the entire network. These indices can provide insight into the rules underlying the organization of ecological processes, but also about the robustness of ecological networks to changes and perturbations. Species-level indices, such as centrality, dependence, species strength, module roles, and different indices for species specialization, describe the roles of species in the network and the importance of species, both for their direct interaction partners and for the cohesion of the entire network. These indices can be used to identify species with important roles which is useful for the conservation of ecological processes. Both network-level and species-level indices are influenced by various factors, such as species’ local abundances, traits, and phylogenetic relationships, as well as environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aizen MA, Sabatino M, Tylianakis JM (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Albert R, Barabasi AL (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:47–97

    Article  Google Scholar 

  • Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76:066102

    Article  Google Scholar 

  • Barrat A, Barthelemy M, Pastor-Satorras R et al (2004) The architecture of complex weighted networks. Proc Natl Acad Sci U S A 101:3747–3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartomeus I (2013) Understanding linkage rules in plant-pollinator networks by using hierarchical models that incorporate pollinator detectability and plant traits. PLoS One 8:e69200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartomeus I, Gravel D, Tylianakis JM et al (2016) A common framework for identifying linkage rules across different types of interactions. Funct Ecol 30:1894–1903

    Article  Google Scholar 

  • Bascompte J, Jordano P (2014) Mutualistic networks. Princeton University Press, Princeton and Oxford

    Google Scholar 

  • Bascompte J, Jordano P, Melián CJ et al (2003) The nested assembly of plant–animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  CAS  PubMed  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-García A et al (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    Article  CAS  PubMed  Google Scholar 

  • Bender IMA, Kissling WD, Böhning-Gaese K et al (2017) Functionally specialised birds respond flexibly to seasonal changes in fruit availability. J Anim Ecol 86:800–811.

    Google Scholar 

  • Blüthgen N, Klein A-M (2011) Functional complementarity and specialisation: the role of biodiversity in plant-pollinator interactions. Basic Appl Ecol 12:282–291

    Article  Google Scholar 

  • Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Bosch J, Martín González AM, Rodrigo A et al (2009) Plant–pollinator networks: adding the pollinator’s perspective. Ecol Lett 12:409–419

    Article  PubMed  Google Scholar 

  • Cattin MF, Bersier LF, Banašek-Richter C et al (2004) Phylogenetic constraints and adaptation explain food-web structure. Nature 427:835–839

    Article  CAS  PubMed  Google Scholar 

  • Corbet SA (2000) Conserving compartments in pollination webs. Conserv Biol 14:1229–1231

    Article  Google Scholar 

  • Dalsgaard B, Trøjelsgaard K, Martín-González AM et al (2013) Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36(12):1331–1340

    Article  Google Scholar 

  • Dalsgaard B, Schleuning M, Maruyama PK et al (2017) Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography (in press). https://doi.org/10.1111/ecog.02604

  • Dehling DM, Töpfer T, Schaefer HM et al (2014) Functional relationships beyond species richness patterns: trait matching in plant–bird mutualisms across scales. Glob Ecol Biogeogr 23:1085–1093

    Article  Google Scholar 

  • Dehling DM, Jordano P, Schaefer HM et al (2016) Morphology predicts species’ functional roles and their degree of specialization in plant–frugivore interactions. Proc R Soc B 283:20152444

    Article  PubMed  PubMed Central  Google Scholar 

  • Donatti CI, Guimarães PR Jr, Galetti M et al (2011) Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol Lett 14:773–781

    Article  PubMed  Google Scholar 

  • Dormann CF, Strauß R (2014) A method for detecting modules in quantitative bipartite networks. Methods Ecol Evol 5:90–98

    Article  Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Dupont YL, Olesen JM (2009) Ecological modules and roles of species in heathland plant–insect flower visitor networks. J Anim Ecol 78:346–353

    Article  PubMed  Google Scholar 

  • Eklöf A, Jacob U, Kopp J et al (2013) The dimensionality of ecological networks. Ecol Lett 16:577–583

    Article  PubMed  Google Scholar 

  • Elton C (1927) Animal ecology. Sidgwick and Jackson, London

    Google Scholar 

  • Falcão JCF, Dáttilo W, Rico-Gray V (2016) Sampling effort differences can lead to biased conclusions on the architecture of ant-plant interaction networks. Ecol Complex 25:44–52

    Article  Google Scholar 

  • Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Article  Google Scholar 

  • Freeman LC (1978) Centrality in social networks conceptual clarification. Soc Networks 1:215–239

    Article  Google Scholar 

  • Guimerà R, Amaral LAN (2005a) Cartography of complex networks: modules and universal roles. J Stat Mech 2005:P02001

    Article  PubMed Central  Google Scholar 

  • Guimerà R, Amaral LAN (2005b) Functional cartography of complex metabolic networks. Nature 433:895–900

    Article  PubMed  PubMed Central  Google Scholar 

  • Guimerà R, Sales-Pardo M, Amaral LAN (2007) Module identification in bipartite and directed networks. Phys Rev E 76:036102

    Article  Google Scholar 

  • Howe HF (1993) Specialized and generalized dispersal systems: where does ‘the paradigm’ stand? Vegetatio 107:3–13

    Google Scholar 

  • Joppa LN, Bascompte J, Montoya JM et al (2009) Reciprocal specialization in ecological networks. Ecol Lett 12:961–969

    Article  PubMed  Google Scholar 

  • Jordán F, Liu WC, Davis AJ (2006) Topological keystone species: measures of positional importance in food webs. Oikos 112:535–546

    Article  Google Scholar 

  • Jordán F, Benedek Z, Podani J (2007) Quantifying positional importance in food webs: a comparison of centrality indices. Ecol Model 205:270–275

    Article  Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Jordano P (2016) Sampling networks of ecological interactions. Funct Ecol 30:1883–1893

    Article  Google Scholar 

  • Jordano P, Bascompte J, Olesen JM (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81

    Article  Google Scholar 

  • Junker RR, Blüthgen N, Brehm T et al (2013) Specialization on traits as basis for the niche-breadth of flower visitors and as structuring mechanism of ecological networks. Funct Ecol 27:329–341

    Article  Google Scholar 

  • Krasnov BR, Fortuna MA, Mouillot D et al (2012) Phylogenetic signal in module composition and species connectivity in compartmentalized host-parasite networks. Am Nat 179:501–511

    Article  PubMed  Google Scholar 

  • Krishna A, Guimarães PR Jr, Jordano P et al (2008) A neutral-niche theory of nestedness in mutualistic networks. Oikos 117:1609–1618

    Article  Google Scholar 

  • Maglianesi MA, Blüthgen N, Böhning-Gaese K et al (2014) Morphological traits determine specialization and resource use in plant–hummingbird networks in the neotropics. Ecology 95:3325–3334

    Article  Google Scholar 

  • Mello MAR, Marquitti FMD, Guimarães PR Jr et al (2011) The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6:e17395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello MAR, Rodrigues FA, Costa LDF et al (2015) Keystone species in seed dispersal networks are mainly determined by dietary specialization. Oikos 124:1031–1039

    Article  Google Scholar 

  • Montoya D, Yallop ML, Memmot J (2015) Functional group diversity increases with modularity in complex food webs. Nat Commun 6:7379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales-Castilla I, Matias MG, Gravel D et al (2015) Inferring biotic interactions from proxies. Trends Ecol Evol 30:347–356

    Article  PubMed  Google Scholar 

  • Nogales M, Heleno R, Rumeu B et al (2015) Seed-dispersal networks on the Canaries and the Galápagos archipelagos: interaction modules as biogeographical entities. Glob Ecol Biogeogr 25:912–922

    Article  Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL et al (2007) The modularity of pollination networks. Proc Natl Acad Sci U S A 104:19891–19896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olesen JM, Bascompte J, Dupont YL et al (2010) Missing and forbidden links in mutualistic networks. Proc R Soc B 278:725–732

    Article  PubMed  PubMed Central  Google Scholar 

  • Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol J Linn Soc 28:65–82

    Article  Google Scholar 

  • Pellmyr O (2002) Pollination by animals. In: Herrera CM, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell, Oxford, pp 157–184

    Google Scholar 

  • Peralta G, Frost CM, Didham RK et al (2015) Phylogenetic diversity and co-evolutionary signals among trophic levels change across a habitat edge. J Anim Ecol 84:364–372

    Article  PubMed  Google Scholar 

  • Petchey OL, Beckerman AP, Riede JO et al (2008) Size, foraging, and food web structure. Proc Natl Acad Sci U S A 105:4191–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulin R, Krasnov BR, Pilosof S et al (2013) Phylogeny determines the role of helminth parasites in intertidal food webs. J Anim Ecol 82:1265–1275

    Article  PubMed  Google Scholar 

  • Rezende EL, Lavabre JE, Guimarães PR Jr et al (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928

    Article  CAS  PubMed  Google Scholar 

  • Schleuning M, Ingmann L, Strauß R et al (2014) Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol Lett 17:454–463

    Article  PubMed  Google Scholar 

  • Solé RV, Montoya JM (2001) Complexity and fragility in ecological networks. Proc R Soc B 268:2039–2045

    Article  PubMed  PubMed Central  Google Scholar 

  • Stang M, Klinkhamer PG, van ver Meijden E (2006) Size constraints and flower abundance determine the number of interactions in a plant–flower visitor web. Oikos 112:111–121

    Article  Google Scholar 

  • Stang M, Klinkhamer PGL, Waser NM et al (2009) Size-specific interaction patterns and size matching in a plant-pollinator interaction web. Ann Bot 103:1459–1469

    Article  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms I: pollination mechanisms. Annu Rev Ecol Evol Syst 1:307–326

    Article  Google Scholar 

  • Stouffer DB, Bascompte J (2011) Compartmentalization increases food-web persistence. Proc Natl Acad Sci U S A 108:3648–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stouffer DB, Rezende EL, Amaral LAN (2011) The role of body mass in diet contiguity and food-web structure. J Anim Ecol 80:632–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Thébault E (2013) Identifying compartments in presence–absence matrices and bipartite networks: insights into modularity measures. J Biogeogr 40:759–768

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN (2006) Mutualistic webs of species. Science 312:372–373

    Article  CAS  PubMed  Google Scholar 

  • Trøjelsgaard K, Olesen JM (2013) Macroecology of pollination networks. Glob Ecol Biogeogr 22:149–162

    Article  Google Scholar 

  • Vázquez DP, Aizen MA (2004) Asymmetric specialization: a pervasive feature of plant–pollinator interactions. Ecology 85:1251–1257

    Article  Google Scholar 

  • Vázquez DP, Chacoff NP, Cagnolo L (2009) Evaluating multiple determinants of the structure of plant–animal mutualistic networks. Ecology 90:2039–2046

    Article  PubMed  Google Scholar 

  • Vizentin-Bugoni J, Maruyama PK, Sazima M (2014) Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird–plant network. Proc R Soc B 281:20132397

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams RJ, Martinez ND (2000) Simple rules yield complex foodwebs. Nature 404:180–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Matthias Dehling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dehling, D.M. (2018). The Structure of Ecological Networks. In: Dáttilo, W., Rico-Gray, V. (eds) Ecological Networks in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-319-68228-0_3

Download citation

Publish with us

Policies and ethics