Skip to main content

Tropical Biodiversity: The Importance of Biotic Interactions for Its Origin, Maintenance, Function, and Conservation

  • Chapter
  • First Online:
Ecological Networks in the Tropics

Abstract

Most of the Earth’s terrestrial biodiversity is found in tropical forests, a fact that fascinates us today as it did the early naturalists of past centuries. It is in this biome where a tremendously high number of coexisting species weave themselves into the most complex web of life, linked together through biotic interactions. These interactions are not only the threads that give structure to biotic communities, but they are also responsible for their evolution and function. In this chapter, we try to render a brief account of the roles that biotic interactions play in (1) the origin of tropical diversity, (2) the maintenance of such diversity through facilitating species coexistence, and (3) the functioning of tropical forest ecosystems. Our fascination with tropical biodiversity is only matched by our fear of losing it. We finish this chapter by stating the undeniable facts, showing how the threads in the web of life are being severed by our own actions. Yet as long as we have some understanding of how the threads of biotic interactions assemble, and if we succeed in conveying the urgency of applying this information, we may be able to keep the web from falling apart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arroyo-Rodríguez V, Melo FPL, Martínez-Ramos M et al (2017) Multiple successional pathways in human-modified tropical landscapes: new insights from forest succession, forest fragmentation and landscape ecology research. Biol Rev 92:326–340

    Article  PubMed  Google Scholar 

  • Bairey E, Kelsic ED, Kishony R (2016) High-order species interactions shape ecosystem diversity. Nat Commun 7:12285. https://doi.org/10.1038/ncomms12285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433

    Article  CAS  PubMed  Google Scholar 

  • Bastolla U, Fortuna MA, Pascual-García A et al (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020

    Article  CAS  PubMed  Google Scholar 

  • Becerra J (2015) On the factors that promote the diversity of herbivorous insects and plants in tropical forests. Proc Natl Acad Sci U S A 112:6098–6103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bronstein JL (ed) (2015) Mutualism. Oxford University Press, Oxford

    Google Scholar 

  • Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41:8–22

    Article  PubMed  Google Scholar 

  • Burslem DFRP, Pinard MA, Hartley SE (eds) (2005) Biotic interactions in the tropics: their role in the maintenance of species diversity. Cambridge University Press, Cambridge

    Google Scholar 

  • Cardinale BJ, Duffy JJ, Gonzalez A et al (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh KC, Gosnell JS, Davis SL et al (2014) Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. Glob Ecol Biogeogr 23:563–573

    Article  Google Scholar 

  • Corlett RT, Primack RB (2011) Tropical rain forests. An ecological and biogeographical comparison. Wiley, Chichester

    Book  Google Scholar 

  • Dáttilo WT, Izzo J, Vasconcelos HL et al (2013) Strength of the modular pattern in Amazonian symbiotic ant–plant networks. Arthropod Plant Interact 7:455–461

    Article  Google Scholar 

  • DeVries PJ (2001) Butterflies. In: Levin SA (ed) Encyclopedia of biodiversity, vol 1. Academic, San Diego, pp 559–573

    Chapter  Google Scholar 

  • Dirzo D, Young HS, Galetti M et al (2014) Defaunation in the anthropocene. Science 345:401–406

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Eklöf A, Jacob U, Kopp J et al (2013) The dimensionality of ecological networks. Ecol Lett 16:577–583

    Article  PubMed  Google Scholar 

  • Fargione J, Tilman D, Dybzinski R et al (2007) From selection to complementarity: shifts in the causes of biodiversity-productivity relationships in a long-term biodiversity experiment. Proc R Soc Lond B 274:871–876

    Article  Google Scholar 

  • Fayle TM, Turner EC, Basset Y et al (2015) Whole-ecosystem experimental manipulations of tropical forests. Trends Ecol Evol 30:334–346

    Article  PubMed  Google Scholar 

  • Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Syst 46:369–392

    Article  Google Scholar 

  • Fine PVA, Metz MR, Lokvam J et al (2013) Insect herbivores, chemical innovation, and the evolution of habitat specialization in Amazonian trees. Ecology 94:1764–1775

    Article  PubMed  Google Scholar 

  • Fleming TH, Kress WJ (2013) The ornaments of life. The University of Chicago Press, Chicago

    Book  Google Scholar 

  • Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1089

    Article  CAS  PubMed  Google Scholar 

  • Guimarães PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885

    Article  PubMed  Google Scholar 

  • Hart MM, Reader RJ, Klironomos JN (2001) Biodiversity and ecosystem function: alternate hypotheses or a single theory? Bull Ecol Soc Am 82:88–90

    Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ et al (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hooper DU, Adair EC, Cardinale BJ et al (2012) A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486:105–108

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1974) The deflowering of Central America. Nat Hist 83:48–53

    Google Scholar 

  • Lefcheck JS, Byrnes JEK, Isbell F et al (2015) Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat Commun 6:6936. https://doi.org/10.1038/ncomms7936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letten AD, Ke P-J, Fukami T (2017) Linking modern coexistence theory and contemporary niche theory. Ecol Monogr. 87:161–177

    Google Scholar 

  • Lewis SL, Edwards DP, Galbraith DR (2015) Increasing human dominance of tropical forests. Science 349:827–832

    Article  CAS  PubMed  Google Scholar 

  • Lohbeck M, Bongers F, Martínez-Ramos M et al (2016) The importance of biodiversity and dominance for multiple ecosystem functions in a human-modified tropical landscape. Ecology 97:2772–2779

    Article  PubMed  Google Scholar 

  • Loreau M, Naeem S, Inchausti P (eds) (2002) Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, London

    Google Scholar 

  • Marquis RJ, Salazar D, Baer C et al (2016) Ode to Ehrlich and Raven or how herbivorous insects might drive plant speciation. Ecology 97:2939–2951

    Article  PubMed  Google Scholar 

  • Martínez-Ramos M, Ortiz-Rodríguez IA, Piñero D et al (2016) Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proc Natl Acad Sci U S A 113:5323–5328

    Article  PubMed  PubMed Central  Google Scholar 

  • Metcalfe DB, Asner GP, Martin RE et al (2014) Herbivory makes major contributions to ecosystem carbon and nutrient cycling in tropical forests. Ecol Lett 17:324–332

    Article  PubMed  Google Scholar 

  • Metz MR (2012) Does habitat specialization by seedlings contribute to the high diversity of a lowland rain forest? J Ecol 100:969–979

    Article  Google Scholar 

  • Mittelbach GG (2012) Community ecology. Sinauer, Sunderland

    Google Scholar 

  • Moles AT, Ollerton J (2016) Is the notion that species interactions are stronger and more specialized in the tropics a zombie idea? Biotropica 48:141–145

    Article  Google Scholar 

  • Morante-Filho JC, Arroyo-Rodríguez V, Lohbeck M et al (2016) Tropical forest loss and its multitrophic effects on insect herbivory. Ecology 97:3315–3325

    Article  PubMed  Google Scholar 

  • Novotny V, Miller SE, Baje L et al (2010) Guild-specific patterns of species richness and host specialization in plant–herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  • Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos 120:321–326

    Article  Google Scholar 

  • Roslin T et al (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356.6339:742–744

    Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV et al (2009) Is there a latitudinal gradient in the importance of biotic interactions. Annu Rev Ecol Syst 40:245–269

    Article  Google Scholar 

  • Schleuning M, Fründ J, Klein AM et al (2012) Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol 22:1925–1931

    Article  CAS  PubMed  Google Scholar 

  • Schupp EW, Milleron T, Russo SE (2002) Dissemination limitation and the origin and maintenance of species-rich tropical forests. In: Levey DJ, Silva WR, Galetti M (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CABI, Oxon, pp 19–33

    Google Scholar 

  • Slik JWF, Arroyo-Rodríguez V, Aiba S-I et al (2015) An estimate of the number of tropical tree species. Proc Natl Acad Sci U S A 112:7472–7477

    Article  PubMed  PubMed Central  Google Scholar 

  • Terborgh J (2012) Enemies maintain hyperdiverse tropical forests. Am Nat 179:303–314

    Article  PubMed  Google Scholar 

  • Terborgh J (2013) Using Janzen-Connell to predict the consequences of defaunation and other disturbances of tropical forests. Biol Conserv 163:7–12

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Mutualistic and trophic networks stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329:853–856

    Article  PubMed  Google Scholar 

  • Thompson JN (1999) The evolution of species interactions. Science 284:2116–2118

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN (2006) Mutualistic webs of species. Science 312:372–373

    Article  CAS  PubMed  Google Scholar 

  • Thompson RM, Brose U, Dunne JA et al (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697

    Article  PubMed  Google Scholar 

  • Tilman D, Knops J, Wedin D et al (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302

    Article  CAS  Google Scholar 

  • Turnbull LA, Levine JM, Loreau M et al (2013) Coexistence, niches and biodiversity effects on ecosystem functioning. Ecol Lett 16:116–127

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Didham RK, Bascompte J et al (2008) Global change and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Tylianakis JM, Laliberté E, Nielsen A et al (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Valiente-Banuet A, Aizen MA, Alcántara JM et al (2015) Beyond species loss: the extinction of ecological interactions in a changing world. Funct Ecol 29:299–307

    Article  Google Scholar 

  • Valladares F, Bastias CC, Godoy O et al (2015) Species coexistence in a changing world. Front Plant Sci 6:866. https://doi.org/10.3389/fpls.2015.00866

    Article  PubMed  PubMed Central  Google Scholar 

  • Vellend M (2016) The theory of ecological communities. Princeton University Press, Princeton

    Book  Google Scholar 

  • Vidal MM, Hasui E, Pizo MA et al (2014) Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology 95:3440–3447

    Article  Google Scholar 

  • Viola DV, Mordecai EA, Jaramillo AG et al (2010) Competition-defense tradeoffs and the maintenance of plant diversity. Proc Natl Acad Sci U S A 107:17217–17222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace AR (1878) Tropical nature and other essays. Macmillan, New York

    Book  Google Scholar 

  • Weber MG, Wagner CE, Best RJ et al (2017) Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol Evol 32:291–304

    Article  PubMed  Google Scholar 

  • Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1–14

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen Andresen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andresen, E., Arroyo-Rodríguez, V., Escobar, F. (2018). Tropical Biodiversity: The Importance of Biotic Interactions for Its Origin, Maintenance, Function, and Conservation. In: Dáttilo, W., Rico-Gray, V. (eds) Ecological Networks in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-319-68228-0_1

Download citation

Publish with us

Policies and ethics