Skip to main content

Trapped-Ion Qubits

  • Chapter
  • First Online:
High-Fidelity Quantum Logic in Ca+

Part of the book series: Springer Theses ((Springer Theses))

  • 386 Accesses

Abstract

In this chapter we give an overview of how one can use a calcium ion as a qubit. We then review the operation of a Paul trap, and discuss the quantised behaviour of a ‘crystal’ of trapped ions near their motional ground state. The shared motional degrees of freedom of such a crystal allow the implementation of quantum ‘logic gates’, i.e. multi-qubit entangling operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The clock qubit is first order insensitive to magnetic field variation at zero magnetic field, but we need to apply a quantisation field of \({\sim }\,2\)G  in order to read out and prepare the qubit efficiently, giving rise to a small first-order dependence.

References

  1. Lucas, D.M., A. Ramos, J.P. Home, M.J. McDonnell, S. Nakayama, J.-P. Stacey, S.C. Webster, D.N. Stacey, and A.M. Steane. 2004. Isotope-selective photoionization for calcium ion trapping. Physical Review A 69 (1): 1–13.

    Article  Google Scholar 

  2. Gulde, S., D. Rotter, P. Barton, F. Schmidt-Kaler, R. Blatt, and W. Hogervorst. 2001. Simple and efficient photo-ionization loading of ions for precision ion-trapping experiments. Applied Physics B 73 (8): 861–863.

    Article  Google Scholar 

  3. Szwer, D.J. 2009. High Fidelity Readout and Protection of a 43Ca+ Trapped Ion Qubit. PhD thesis, University of Oxford.

    Google Scholar 

  4. Harty, T.P. 2013. High-Fidelity Microwave-Driven Quantum Logic in Intermediate-Field 43Ca+. PhD thesis.

    Google Scholar 

  5. Janacek, H.A. 2014. Simulating trapped-ion qubits using the optical Bloch equations. PhD thesis, University of Oxford.

    Google Scholar 

  6. Dehmelt, H. 1975. Proposed \(10^{14} \delta \nu > \nu \) laser fluorescence spectroscopy of Tl\(^+\) mono-ion oscillator II. Bulletin of the American Physical Society 20 (1): 60.

    Google Scholar 

  7. Myerson, A., D.J. Szwer, S.C. Webster, D.T.C. Allcock, M.J. Curtis, G. Imreh, J.A. Sherman, D.N. Stacey, A.M. Steane, and D.M. Lucas. 2008. High-fidelity readout of trapped-ion qubits. Physical Review Letters 100 (20): 200502.

    Article  ADS  Google Scholar 

  8. Burrell, A.H. 2010. High-fidelity readout of trapped-ion qubits. PhD thesis, University of Oxford.

    Google Scholar 

  9. McDonnell, M.J., J.-P. Stacey, S.C. Webster, J.P. Home, A. Ramos, D.M. Lucas, D.N. Stacey, and A.M. Steane. 2004. High-efficiency detection of a single quantum of angular momentum by suppression of optical pumping. Physical Review Letters 93 (15): 1–4.

    Article  Google Scholar 

  10. Landau, L.D. and E.M. Lifshitz. 1976. Mechanics (3rd Ed.), pages 93–95. Butterworth-Heinemann.

    Google Scholar 

  11. Berkeland, D.J., J.D. Miller, J.C. Bergquist, W.M. Itano, and D.J. Wineland. Minimization of ion micromotion in a Paul trap. Journal of Applied Physics, 83(10), 1998.

    Google Scholar 

  12. James, D.F.V. 1998. Quantum dynamics of cold trapped ions with application to quantum computation. Applied Physics B: Lasers and Optics 66 (2): 181–190.

    Article  ADS  MathSciNet  Google Scholar 

  13. Wineland, D.J., C. Monroe, W.M. Itano, D. Leibfried, B.E. King, and D.M. Meekhof. 1998. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. Journal Of Research Of The National Institute Of Standards And Technology, 103(3).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ballance .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ballance, C.J. (2017). Trapped-Ion Qubits. In: High-Fidelity Quantum Logic in Ca+. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68216-7_2

Download citation

Publish with us

Policies and ethics