A Queryable Dump of the LOD Cloud
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10588)


LOD-a-lot democratizes access to the Linked Open Data (LOD) Cloud by serving more than 28 billion unique triples from 650 K datasets over a single self-indexed file. This corpus can be queried online with a sustainable Linked Data Fragments interface, or downloaded and consumed locally: LOD-a-lot is easy to deploy and demands affordable resources (524 GB of disk space and 15.7 GB of RAM), enabling Web-scale repeatable experimentation and research even by standard laptops.



Partly funded by Austrian Science Fund: M1720-G11, European Union’s Horizon 2020 research and innovation programme under grant 731601, WU Post-doc Research Contracts, and MINECO, Spain: TIN2013-46238-C4-3-R, and TIN2016-78011-C4-1-R. We also thank the KEYSTONE COST Action IC1302.


  1. 1.
    Beek, W., Ilievski, F., Debattista, J., Schlobach, S., Wielemaker, J.: Literally better: analyzing and improving the quality of literals. Semant. Web J. (2017).
  2. 2.
    Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD laundromat: a uniform way of publishing other people’s dirty data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 213–228. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_14 Google Scholar
  3. 3.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data: the story so far. Int. J. Semant. Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  4. 4.
    Boncz, P., Fundulaki, I., Gubichev, A., Larriba-Pey, J., Neumann, T.: The linked data benchmark council project. Datenbank-Spektrum 13(2), 121–129 (2013)CrossRefGoogle Scholar
  5. 5.
    Buil-Aranda, C., Arenas, M., Corcho, O., Polleres, A.: Federating queries in SPARQL 1.1: syntax, semantics and evaluation. JWS 18(1), 1–17 (2013)CrossRefGoogle Scholar
  6. 6.
    Ding, L., Finin, T.: Characterizing the semantic web on the web. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 242–257. Springer, Heidelberg (2006). doi: 10.1007/11926078_18 CrossRefGoogle Scholar
  7. 7.
    Ermilov, I., Lehmann, J., Martin, M., Auer, S.: LODStats: the data web census dataset. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) ISWC 2016. LNCS, vol. 9982, pp. 38–46. Springer, Cham (2016). doi: 10.1007/978-3-319-46547-0_5 CrossRefGoogle Scholar
  8. 8.
    Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary RDF representation for publication and exchange (HDT). JWS 19, 22–41 (2013)CrossRefGoogle Scholar
  9. 9.
    Garlik, S.H., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C Recommendation (2013).
  10. 10.
    Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join ordering in SPARQL queries. In: Proceedings of EDBT, pp. 439–450 (2014)Google Scholar
  11. 11.
    Hartig, O.: SQUIN: a traversal based query execution system for the web of linked data. In: Proceedings of SIGMOD, pp. 1081–1084 (2013)Google Scholar
  12. 12.
    Hartig, O., Pirró, G.: A context-based semantics for SPARQL property paths over the web. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp. 71–87. Springer, Cham (2015). doi: 10.1007/978-3-319-18818-8_5 CrossRefGoogle Scholar
  13. 13.
    Käfer, T., Harth, A.: Billion Triples Challenge Data Set (2014).
  14. 14.
    Lanthaler, M., Gütl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs. In: CEUR, vol. 996 (2013)Google Scholar
  15. 15.
    Martínez-Prieto, M.A., Arias Gallego, M., Fernández, J.D.: Exchange and consumption of huge RDF data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 437–452. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30284-8_36 CrossRefGoogle Scholar
  16. 16.
    Meusel, R., Petrovski, P., Bizer, C.: The webdatacommons microdata, RDFa and microformat dataset series. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 277–292. Springer, Cham (2014). doi: 10.1007/978-3-319-11964-9_18 Google Scholar
  17. 17.
    Millard, I.C., Glaser, H., Salvadores, M., Shadbolt, N.: Consuming multiple linked data sources: challenges and experiences. In: Proceedings of COLD, vol. 665, pp. 37–48. CEUR (2010)Google Scholar
  18. 18.
    Oguz, D., Ergenc, B., Yin, S., Dikenelli, O., Hameurlain, A.: Federated query processing on linked data: a qualitative survey and open challenges. Knowl. Eng. Rev. 30(5), 545–563 (2015)CrossRefGoogle Scholar
  19. 19.
    Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.: a document-oriented lookup index for open linked data. Int. J. Metadata Semant. Ontol 3(1), 37–52 (2008)CrossRefGoogle Scholar
  20. 20.
    Rietveld, L., Beek, W., Hoekstra, R., Schlobach, S.: Meta-data for a lot of LOD. Semantic Web J. 8(6), 1067–1080 (2017)CrossRefGoogle Scholar
  21. 21.
    Vandenbussche, P.Y., Umbrich, J., Matteis, L., Hogan, A., Buil-Aranda, C.: SPARQLES: Monitoring public SPARQL endpoints. Semantic Web J. 8(6), 1049–1065 (2017)CrossRefGoogle Scholar
  22. 22.
    Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De Meester, B., Haesendonck, G., Colpaert, P.: Triple pattern fragments: a low-cost knowledge graph interface for the web. JWS 37–38, 184–206 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Vienna University of Economics and BusinessViennaAustria
  2. 2.Complexity Science Hub ViennaViennaAustria
  3. 3.Department of Computer ScienceVU University AmsterdamAmsterdamNetherlands
  4. 4.Department of Computer ScienceUniversidad de ValladolidSegoviaSpain
  5. 5.Mario Arias SoftwareLondonUK

Personalised recommendations