Skip to main content

Impact of Micro- and Hypergravity on Neurovestibular Issues of Fish

Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

For decades, research in altered gravitational environments has been undertaken to elucidate the impact of gravity on a broad variety of biosystems from unicellular organisms to vertebrate animals. In the preparation of scarce and costly orbital missions, different short-term flight opportunities (drop-tower flights, parabolic aircraft flights, sounding rocket flights) as well as ground-based facilities like centrifuges and microgravity simulators are being used. Here, we present an overview of studies carried out under short-term and long-term altered gravity on fish, with a focus on vestibular issues of cichlid fish (Oreochromis mossambicus) larvae and juvenile swordtails (Xiphophorus helleri). These experiments were focused on their behaviour, analyses of neuronal tissues, epithelia of utricle and saccule and as well on inner ear stones, the otoliths. Kinetoses (motion sickness) were frequently observed in altered—especially diminished—gravity, and evidence could be provided that asymmetric otoliths are a major factor in kinetosis susceptibility. Furthermore, we could show that the biomineralization of otoliths is adjusted towards gravity by means of a neuronally guided feedback loop.

Keywords

  • Fish
  • Inner ear
  • Otolith
  • Calcium
  • Bio mineralization
  • Asymmetry
  • Behaviour
  • Kinetosis
  • Space
  • Microgravity
  • Drop tower
  • Texus

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68201-3_4
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-68201-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8

References

  • Aceto J, Nourizadeh-Lillabadi R, Marée R et al (2015) Zebrafish bone and general physiology are differently affected by hormones or changes in gravity. PLoS One 10(6):e0126928. https://doi.org/10.1371/journal.pone.0126928

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Anken RH (2006) On the role of the central nervous system in regulating the mineralization of inner-ear otoliths of fish. Protoplasma 229:205–208. https://doi.org/10.1007/s00709-006-0219-6

    CrossRef  PubMed  Google Scholar 

  • Anken RH, Hilbig R (2004) Determination of the threshold of gravity for inducing kinetosis in fish: a drop-tower experiment. Microgravity Sci Technol 15:52–57. https://doi.org/10.1007/BF02870958

    CAS  CrossRef  PubMed  Google Scholar 

  • Anken RH, Rahmann H (1999) Effect of altered gravity on the neurobiology of fish. Naturwissenschaften 86:155–167

    CAS  CrossRef  PubMed  Google Scholar 

  • Anken RH, Rahmann H (2002) Gravitational zoology: how animals use and cope with gravity. In: Horneck G, Baumstark-Khan C (eds) Astrobiology. Springer, Berlin, pp 315–333

    CrossRef  Google Scholar 

  • Anken RH, Kappel T, Slenzka K et al (1993) The early morphogenetic development of the chichlid fish, Oreochromis mossambicus (Perciformes, Teleostei). Zool Anz 231:1–10

    Google Scholar 

  • Anken RH, Ibsch M, Rahmann H (1998a) Neurobiology of fish under altered gravity conditions. Brain Res Rev 28:9–18

    CAS  CrossRef  PubMed  Google Scholar 

  • Anken RH, Kappel T, Rahmann H (1998b) Morphometry of fish inner ear otoliths after development at 3g hypergravity. Acta Otolaryngol 118:534–539

    CAS  CrossRef  PubMed  Google Scholar 

  • Anken RH, Hilbig R, Ibsch M et al (1999) Readaptation of fish to 1g after long-term microgravity—neurobiological results from the STS 89 and the STS 90- (Neurolab) mission. In: Proceedings of the 7th European symposium on life sciences research in space, pp 124–126

    Google Scholar 

  • Anken RH, Edelmann E, Rahmann H (2000) Fish inner ear otoliths stop calcium incorporation after vestibular nerve transection. Neuroreport 11:2981–2983

    CAS  CrossRef  PubMed  Google Scholar 

  • Anken RH, Ibsch M, Breuer J et al (2001) Effect of hypergravity on the Ca/Sr composition of developing otoliths of larval cichlid fish (Oreochromis mossambicus). Comp Biochem Physiol A 128:369–377

    CAS  CrossRef  Google Scholar 

  • Anken RH, Beier M, Edelmann E et al (2002) Neuronal regulation of otolith growth and kinetotic behaviour. J Gravit Physiol 9:37–38

    Google Scholar 

  • Anken RH, Beier M, Rahmann H (2004) Hypergravity decreases carbonic anhydrase-reactivity in inner ear maculae of fish. J Exp Zool A 301:815–819

    CrossRef  Google Scholar 

  • Anken RH, Forster A, Baur U et al (2006) Otolith asymmetry and kinetotic behaviour of fish at high-quality microgravity: a drop-tower experiment. Adv Space Res 38:1032–1036

    CrossRef  Google Scholar 

  • Anken RH, Baur U, Hilbig R (2010) Clinorotation increases the growth of utricular otoliths of developing cichlid fish. Microgravity Sci Technol 22:151–154

    CrossRef  Google Scholar 

  • Anken RH, Brungs S, Grimm D et al (2016) Fish inner ear otolith growth under real microgravity (spaceflight) and clinorotation. Microgravity Sci Technol 28:351–356

    CAS  CrossRef  Google Scholar 

  • Baird L (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel W, Neff W (eds) Auditory system: anatomy physiology (ear). Springer, New York, pp 159–212

    CrossRef  Google Scholar 

  • Bäuerle A, Anken RH, Hilbig R et al (2004a) Histology of the utricle in kinetotically swimming fish: a parabolic aircraft flight study. Acta Otolaryngol 124:19–22

    CrossRef  PubMed  Google Scholar 

  • Bäuerle A, Anken RH, Hilbig R et al (2004b) Size and cell number of the utricle in kinetotically swimming fish: a parabolic aircraft flight study. Adv Space Res 34:1598–1601

    CrossRef  PubMed  Google Scholar 

  • Beier M, Anken RH (2006) On the role of carbonic anhydrase in the early phase of fish otolith mineralization. Adv Space Res 38:1119–1122

    CAS  CrossRef  Google Scholar 

  • Beier M, Anken RH, Rahmann H (2002a) Influence of hypergravity on fish inner ear otoliths: II. Incorporation of calcium and kinetotic behaviour. Adv Space Res 30:727–731

    CAS  CrossRef  PubMed  Google Scholar 

  • Beier M, Anken RH, Rahmann H (2002b) Susceptibility to abnormal (kinetotic). Swimming fish correlates with inner ear carbonic anhydrase-reactivity. Neurosci Lett 335:17–20

    CAS  CrossRef  PubMed  Google Scholar 

  • Beier M, Hilbig R, Anken RH (2008) Histochemical localisation of carbonic anhydrase in the inner ear of developing cichlid fish, Oreochromis mossambicus. Adv Space Res 42:1986–1994

    CAS  CrossRef  Google Scholar 

  • Blüm V (2003) Aquatic modules for bioregenerative life support systems: developmental aspects based on the space flight results of the C.E.B.A.S. MINI-MODULE. Adv Space Res 31:1683–1691

    CrossRef  PubMed  Google Scholar 

  • Blüm V, Paris F (2001) Aquatic modules for bioregenerative life support systems based on the C.E.B.A.S. Biotechnology. Acta Astronaut 48:287–297

    CrossRef  Google Scholar 

  • Blüm V, Andriske M, Ludwig C et al (2003) The “C.E.B.A.S. MINI-MODULE”: a self-sustaining closed aquatic ecosystem for spaceflight experimentation. Adv Space Res 2003:201–210

    CrossRef  Google Scholar 

  • Briegleb W, Neubert J, Schatz A et al (1986) Survey of the vestibulum, and behavior of Xenopus laevis larvae developed during a 7-days space flight. Adv Space Res 6:151–156

    CAS  CrossRef  PubMed  Google Scholar 

  • Brungs S, Hauslage J, Hilbig R et al (2011) Effects of simulated weightlessness on fish otolith growth: clinostat versus rotating-wall vessel. Adv Space Res 48:792–798

    CrossRef  Google Scholar 

  • Casper B (2011) The ear and hearing in sharks, skates, and rays. In: Farrell A (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 262–269

    CrossRef  Google Scholar 

  • Davis J, Oberholtzer J, Burns F et al (1995) Molecular cloning and characterization of an inner ear-specific protein. Science 267:1031–1034

    CAS  CrossRef  PubMed  Google Scholar 

  • Davis J, Burns F, Navaratnam D et al (1997) Identification of a structural constituent and one possible site of postembryonic formation of a teleost otolithic membrane. Proc Natl Acad Sci U S A 94:707–712

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • DeJong H, Sondag E, Kuipers A et al (1996) Swimming behaviour of fish during short periods of weightlessness. Aviat Space Environ Med 67:463–466

    CAS  Google Scholar 

  • Dumont RA, Lins U, Filoteo AG et al (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21(14):5066–5078

    CAS  PubMed  Google Scholar 

  • Edelmann E, Anken RH, Rahmann H (2004) Swimming behaviour and calcium incorporation into inner ear otoliths of fish after vestibular nerve transection. Adv Space Res 33:1390–1394

    CAS  CrossRef  PubMed  Google Scholar 

  • Fermin CD, Lychakov D, Campos A et al (1998) Otoconia biogenesis, phylogeny, composition and functional attributes. Histol Histopathol 13:1103–1154

    CAS  PubMed  Google Scholar 

  • Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear and auditory nuclei. In: Webster D, Fay R, Popper A (eds) The evolutionary biology of hearing. Springer, New York, pp 351–375

    CrossRef  Google Scholar 

  • Fritzsch B (1998) Evolution of the vestibulo-ocular system. Otolaryngol Head Neck Surg 119:182–192

    CAS  CrossRef  PubMed  Google Scholar 

  • Fritzsch B, Beisel K, Jones K et al (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156. https://doi.org/10.1002/neu.10098

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Häder D, Braun M, Grimm D et al (2017) Gravireceptors in eukaryotes—a comparison of case studies on the cellular level. NPJ Microgravity 3:13. https://doi.org/10.1038/s41526-017-0018-8

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Helling K, Hausmann S, Clark A et al (2003) Experimentally induced motion sickness in fish: possible role of the otolith organs. Acta Otolaryngol 123:488–492

    CrossRef  PubMed  Google Scholar 

  • Herranz R, Anken RH, Boonstra J et al (2013) Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13:1–17

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hilbig R, Lebert M (2010) OMEGAHAB-XP a bioregenerative aquatic life support system designed to be used in Bion-M1 long term space flight. In: Abstracts of the proceedings of the 38th COSPAR scientific assembly, Code: 2010cosp...38.3359H

    Google Scholar 

  • Hilbig R, Schüle T, Ibsch M et al (1996) New approaches to the gravity relevant behavior of the swordtail fish (Xiphophorus helleri). In: Proceedings of the XII. C.E.B.A.S. Workshop conference, pp 51–57

    Google Scholar 

  • Hilbig R, Anken RH, Bäuerle A et al (2002a) Susceptibility to motion sickness in fish: a parabolic aircraft flight study. J Gravit Physiol 8:29–30

    Google Scholar 

  • Hilbig R, Anken RH, Sonntag G et al (2002b) Effects of altered gravity on the swimming behavior of fish. Adv Space Res 30:835–841

    CAS  CrossRef  PubMed  Google Scholar 

  • Hilbig R, Anken RH, Rahmann H (2003) On the origin of susceptibility to kinetotic swimming behaviour in fish: a parabolic aircraft flight study. J Vestib Res 12:185–189

    Google Scholar 

  • Hilbig R, Knie M, Shcherbakov D et al. (2011) Analysis of behaviour and habituation of fish exposed to diminished gravity in correlation to inner ear stone formation: a sounding rocket experiment (Texus 45). In: Proceedings of the 20th ESA symposium on European rocket and balloon programmes and related research, ESA SP-700, p 6

    Google Scholar 

  • Hoffman R, Salinas G, Baky A (1977) Behavioral analyses of killifish exposed to weightlessness in the Apollo-Soyuz test project. Aviat Space Environ Med 48:712–717

    CAS  PubMed  Google Scholar 

  • Horn E, Sebastian C (2002) Adaptation of the macular vestibule ocular reflex to altered gravitational conditions in a fish (Oreochromis mossambicus). Adv Space Res 30:711–720

    CAS  CrossRef  PubMed  Google Scholar 

  • Hudspeth A (2008) Making an effort to listen: mechanical amplification in the ear. Neuron 59:530–545. https://doi.org/10.1016/j.neuron.2008.07.012

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hughes I, Thalmann I, Thalmann R et al (2006) Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 1091:58–74

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ibsch M, Anken RH, Rahmann H (2004) Calcium gradients in the fish inner ear sensory epithelium and otolithic membrane visualized by energy filtering transmission electron microscopy (EFTEM). Adv Space Res 33:1395–1400

    CAS  CrossRef  PubMed  Google Scholar 

  • Ijiri K (1995) Fish mating experiment in space—what it aimed at and how it was prepared. Biol Sci Space 9:3–16

    CAS  CrossRef  PubMed  Google Scholar 

  • Knie M (2014) Zur Lokalisation und Funktion des Calciumtransporters im Innenohr von Knochenfischen (Oreochromis mossambicus). PhD-thesis, Institute of Zoology, University of Hohenheim, Stuttgart

    Google Scholar 

  • Kohn F, Hauslage J, Hanke W (2017) Membrane fluidity changes, a basic mechanism of interaction of gravity with cells? Microgravity Sci Technol. https://doi.org/10.1007/s12217-017-9552-y

  • Ladich F, Schulz-Mirbach T (2016) Diversity in fish auditory systems: one of the riddles of sensory biology. Front Ecol Evol 4:article 28. https://doi.org/10.3389/fevo.2016.00028

    CrossRef  Google Scholar 

  • Li X, Anken RH, Wang G et al (2011) Effects of wall vessel rotation on the growth of larval zebrafish inner ear otoliths. Microgravity Sci Technol 23:13–18

    CrossRef  Google Scholar 

  • Li X, Anken RH, Liu L et al (2017) Effects of simulated microgravity on otolith growth of larval zebrafish using a rotating-wall vessel: appropriate rotation speed and fish developmental stage. Microgravity Sci Technol 29:1–8

    CrossRef  Google Scholar 

  • Lowenstein O, Roberts T (1949) The equilibrium function of the otolith organs of the thornback ray (Raja clavata). J Physiol 110:392–415

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Miller-Bever M, Fekete DM (2002) Atlas of the developing inner ear in zebrafish. Dev Dyn 223:536–543. https://doi.org/10.1002/dvdy.10062

    CrossRef  Google Scholar 

  • Mori S, Mitarai G, Takabayashi A et al (1996) Evidence of sensory conflict and recovery in carp exposed to prolonged weightlessness. Aviat Space Environ Med 67:256–261

    CAS  PubMed  Google Scholar 

  • Murayama E, Takagi Y, Nagasawa H (2004) Immunohistochemical localization of two otolith matrix proteins in the otolith and inner ear of the rainbow trout, Oncorhynchus mykiss: comparative aspects between the adult inner ear and embryonic otocysts. Histochem Cell Biol 121:155–166

    CAS  CrossRef  PubMed  Google Scholar 

  • Murayama E, Herbomel P, Kawakami A et al (2005) Otolith matrix proteins OMP-1 and Otolin-1 are necessary for normal otolith growth and their correct anchoring onto the sensory maculae. Mech Dev 122:791–803

    CAS  CrossRef  PubMed  Google Scholar 

  • Parker D (1998) The relative roles of the otolith organs and semicircular canals in producing space motion sickness. J Vest Res 8:57–59

    CAS  CrossRef  Google Scholar 

  • Petko J, Millimaki B, Canfield V et al (2008) Otoc1: a novel otoconin-90 ortholog required for otolith mineralization in zebrafish. Dev Neurobiol 68:209–222

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Platt C (1983) The peripheral vestibular system of fishes. In: Northcutt R, Davis R (eds) Fish neurobiology. University of Michigan Press, Ann Arbor, pp 89–123

    Google Scholar 

  • Popper A (1981) Comparative scanning electron microscopic investigations of the sensory epithelia in the teleost sacculus and lagena. J Comp Neurol 200:357–374

    CAS  CrossRef  PubMed  Google Scholar 

  • Popper A, Fay R (1993) Sound detection and processing by fish-critical review and major research questions. Brain Behav Evol 41:14–38. https://doi.org/10.1159/000113821

    CAS  CrossRef  PubMed  Google Scholar 

  • Porst M, Lebert M, Häder D (1997) Long-term cultivation of the flagellate Euglena gracilis. Microgravity Sci Technol 10:166–169

    CAS  PubMed  Google Scholar 

  • Rahmann H, Slenzka, K, Anken RH et al. (1995) Structure- and function-related neuronal plasticity of the CNS of aquatic vertebrates during early ontogenetic development under microgravity conditions. In: Sahm P (ed) Scientific results of the German Spacelab Mission D-2, Wissenschafliche Projektleitung D-2, Aachen, pp 621–637

    Google Scholar 

  • Rahmann H, Hilbig R, Flemming J et al (1996) Influence of long-term altered gravity on the swimming performance of developing cichlid fish: including results from the 2nd German Spacelab Mission D-2. Adv Space Res 17:121–124

    CAS  CrossRef  PubMed  Google Scholar 

  • Riley B, Moorman S (2000) Development of utricular otoliths, but not saccular otoliths, is necessary for vestibular function and survival in zebrafish. J Neurobiol 43:329–337

    CAS  CrossRef  PubMed  Google Scholar 

  • Riley B, Zhu C, Janetopoulos C et al (1997) A critical period of ear development controlled by distinct populations of ciliated cells in the zebrafish. Dev Biol 191:191–201

    CAS  CrossRef  PubMed  Google Scholar 

  • Rogers P, Lewis T (1995) Startle reflex in fish. J Acoust Soc Am 98:2939. https://doi.org/10.1121/1.414111

    CrossRef  Google Scholar 

  • Schick J (2007) Rasterelektronenmikroskopische Aspekte zur Genese der Otolithen bei Buntbarschen (Oreochromis mossambiccus). State examination thesis, Institute of Zoology, University of Hohenheim, Stuttgart

    Google Scholar 

  • Schulz-Mirbach T, Ladich F, Plath M et al (2014) Accessory hearing structures linked to inner ear morphology? Insights from 3D orientation patterns of ciliary bundles in three cichlid species. Front Zool 11:article 25. https://doi.org/10.1186/1742-9994-11-25

    CrossRef  Google Scholar 

  • Sebastian C, Esseling K, Horn E (2001) Altered gravitational forces affect the development of the static vestibuloocular reflex in fish (Oreochromis mossambicus). J Neurobiol 46:59–72

    CAS  CrossRef  PubMed  Google Scholar 

  • Simmler M, Zwaenepoel I, Verpy E et al (2000) Twister mutant mice are defective for otogelin, a component specific to inner ear acellular membranes. Mamm Genome 11:961–966

    CAS  CrossRef  PubMed  Google Scholar 

  • Söllner C, Nicolson T (2005) The zebrafish as a genetic model to study otolith formation. In: Bäuerlein E (ed) Biomineralization: progress in biology, molecular biology and application, 2nd edn. Wiley VCH, Weinheim, pp 229–242

    CrossRef  Google Scholar 

  • Söllner C, Burghammer M, Busch-Nentwich E et al (2003) Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302:282–286

    CrossRef  PubMed  Google Scholar 

  • Stooke-Vaughan G, Huang P, Hammond K et al (2012) The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle. Development 139:1777–1787

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Strauch S, Schuster M, Lebert M et al (2008) A closed ecological system in a space experiment. In: Proceedings of the symposium on life in space for life on earth, ESA-SP 553, id.41

    Google Scholar 

  • Takabayashi A, Ohara K, Ohmura T et al (1998) Mechanism of vestibular adaptation of fish under microgravity. Biol Sci Space 11:351–354

    CrossRef  Google Scholar 

  • Takabayashi A, Iwata K, Ohmura-Iwasaki T et al (2004) Vestibulo-ocular reflex and gravity in fish. Biol Sci Space 18:132–133

    PubMed  Google Scholar 

  • Thalmann I, Hughes I, Tong B et al (2006) Microscale analysis of proteins in inner ear tissues and fluids with emphasis on endolymphatic sac, otoconia, and organ of Corti. Electrophoresis 27:1598–1608. https://doi.org/10.1002/elps.200500768

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Tohse H, Mugiya Y (2001) Effects of enzyme and anion transport inhibitors on in vitro incorporation of inorganic carbon and calcium into endo-lymph and otoliths in salmon Oncorhynchus masou. Comp Biochem Physiol A 128:177–184

    CAS  CrossRef  Google Scholar 

  • van Loon J (2016) Centrifuges for microgravity simulation. The reduced gravity paradigm. Front AstronSpace Sci 3:article 21. https://doi.org/10.3389/fspas.2016.00021

    Google Scholar 

  • von Baumgarten R (1986) European vestibular experiments on the Spacelab-1 mission: 1. Overview. Exp Brain Res 64:239–246

    CrossRef  Google Scholar 

  • von Baumgarten R, Thümler R (1979) A model for vestibular function in altered gravitational states. Life Sci Space Res 17:161–170

    CrossRef  Google Scholar 

  • von Baumgarten R, Baldrighi G, Atema J et al (1970) Behavioral responses to linear accelerations in blind goldfish. Space Life Sci 3:25–33

    Google Scholar 

  • von Baumgarten R, Baldrighi G, Schillinger G (1972) Vestibular behaviour in fish during diminished G-force and weightlessness. Aerospace Med 43:626–632

    Google Scholar 

  • von Holst E (1935) Über den Lichtrückenreflex bei Fischen. Publ Zool Stat Napoli 15:143–158

    Google Scholar 

  • von Holst E (1950) Die Arbeitsweise des Statolithenapparates bei Fischen. Z vergl Physiol 33:60–120

    CrossRef  Google Scholar 

  • Wada H, Dambly-Chaudière C, Kawakami K et al (2013) Innervation is required for sense organ development in the lateral line system of adult zebrafish. Proc Natl Acad Sci U S A 110:5659–5664. https://doi.org/10.1073/pnas.1214004110 PMCID: PMC3619376 Neuroscience

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Watanabe S, Takabayashi A, Takagi S et al (1989) Dorsal light response and changes of its responses under varying acceleration conditions. Adv Space Res 9:231–240

    CAS  CrossRef  PubMed  Google Scholar 

  • Watanabe S, Takabayashi A, Tanaka M et al (1991) Neurovestibular physiology in fish. Adv Space Biol Med 1:99–128

    CAS  CrossRef  PubMed  Google Scholar 

  • Weigele J, Franz-Odendaal T, Hilbig R (2015a) Spatial expression of otolith matrix protein-1 and Otolin-1 in normally and kinetotically swimming fish. Anat Rec 298:1765–1773

    CAS  CrossRef  Google Scholar 

  • Weigele J, Franz-Odendaal T, Hilbig R (2015b) Expression of SPARC and the Osteopontin-like protein during skeletal development in the cichlid fish Oreochromis mossambicus. Dev Dyn 244:955–972. https://doi.org/10.1002/DVDY.24293

    CAS  CrossRef  PubMed  Google Scholar 

  • Weigele J, Franz-Odendaal T, Hilbig R (2016) Formation of the inner ear during embryonic and larval development of the cichlid fish (Oreochromis mossambicus). Connect Tissue Res 58:172–195. https://doi.org/10.1080/03008207.2016.1198337

    CrossRef  PubMed  Google Scholar 

  • Wiederhold M, Harrison J, Gao W (2000) Otoliths developed in microgravity. J Gravit Physiol 7:39–42

    Google Scholar 

  • Wiederhold M, Harrison J, Gao W (2003) A critical period for gravitational effects on otolith formation. J Vest Res 13:205–214

    Google Scholar 

  • Yan H, Popper A (1993) Acoustic intensity discrimination by the cichlid fish Astronotus ocellatus (Cuvier). J Comp Physiol A 173:347–351

    CAS  CrossRef  PubMed  Google Scholar 

  • Yanagihara D, Watanabe S, Takagi S et al (1993) Neuroanatomical substrate for the dorsal light response. II. Effects of kainic acid-induced lesions of the valvula cerebelli on the goldfish dorsal light response. Neurosci Res 16:33–37

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Space Administration (DLR) for funding and co-ordinating our space-related research projects (Grant 50WB0527, 50WB1027) and the teams of ESA, ZARM, Novespace and SSC (Swedish Space Corporation) for their valuable support in the preparation phase and during the missions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Hilbig .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Hilbig, R.W., Anken, R.H. (2017). Impact of Micro- and Hypergravity on Neurovestibular Issues of Fish. In: Sensory Motor and Behavioral Research in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-68201-3_4

Download citation