Skip to main content

Posture and Locomotion

Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)

Abstract

Gravity affects the human body in numerous ways. This chapter reviews recent findings on how the nervous system governs muscle forces to control upright posture and locomotion in varying gravity conditions. With an emphasis on gravity conditions below Earth gravitation, three major aspects for the control of stance and gait are presented for short-term and long-term adaptation: the integration of sensory feedback via spinal and supraspinal circuitries to command the neuromuscular system governing the movement and the biomechanical output which defines the quality of these motor skills. Numerous experiments executed in space flight or simulation studies frame the content of this chapter that contains the sub-themes: posture control and locomotion.

Keywords

  • Central nervous system
  • Reflex
  • Spinal
  • Supraspinal
  • Sensory feedback
  • Biomechanics
  • Musculature
  • Pertubation
  • Swing phase
  • Stance phase
  • Body segments
  • Stretch-shortening cycle
  • Force
  • Contraction
  • Movement

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68201-3_1
  • Chapter length: 35 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-68201-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.1

References

  • Ali AA, Sabbahi MA (2000) H-reflex changes under spinal loading and unloading conditions in normal subjects. Clin Neurophysiol 111(4):664–670

    CAS  PubMed  CrossRef  Google Scholar 

  • Anderson DJ, Reschke MF, Homick JE et al (1986) Dynamic posture analysis of Spacelab-1 crew members. Exp Brain Res 64(2):380–391

    CAS  PubMed  CrossRef  Google Scholar 

  • Avela J, Santos PM, Kyrolainen H et al (1994) Effects of different simulated gravity conditions on neuromuscular control in drop jump exercises. Aviat Space Environ Med 65(4):301–308

    CAS  PubMed  Google Scholar 

  • Baroni G, Pedrocchi A, Ferrigno G et al (2001) Static and dynamic postural control in long-term microgravity: evidence of a dual adaptation. J Appl Physiol 90(1):205–215

    CAS  PubMed  Google Scholar 

  • Bloomberg JJ, Reschke MF, Peters BT et al (1994) Head stability during treadmill locomotion following space flight. Aviat Space Environ Med 65:449

    Google Scholar 

  • Bloomberg JJ, Peters BT, Smith SL et al (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7(2–3):161–177

    CAS  PubMed  CrossRef  Google Scholar 

  • Bloomberg JJ, McDonald PV, Peters BT et al (1999) Effects of space flight on locomotor control. In: Sawin CF (ed) Extended duration orbiter medical project. NASA Johnson Space Center, Houston, pp 5.5-1–5.5-57

    Google Scholar 

  • Boyle R, Mensinger AF, Yoshida K et al (2001) Neural readaptation to Earth’s gravity following return from space. J Neurophysiol 86(4):2118–2122

    CAS  PubMed  Google Scholar 

  • Bryanov II, Yemel’yanov MD, Matveyev AD et al (1976) Characteristics of statokinetic reactions. In: Gazenko OG, Kakurin LI, Kuznetsov AG (eds) Kosmicheskiye Polety na Korablyakh “soyuz” Biomeditsinskiye Issledovaniya. 5.5–5.31 Biomedical research. Nauka Press, Moscow. English Edition: Space flights in the soyuz spacecraft. Leo Kanner Associates, Redwood City, CA, pp 1–416

    Google Scholar 

  • Carriot J, Jamali M, Cullen KE (2015) Rapid adaptation of multisensory integration in vestibular pathways. Front Syst Neurosci 9(59):1–5. https://doi.org/10.3389/fnsys.2015.00059

    Google Scholar 

  • Cavagna GA, Zamboni A, Faraggiana T et al (1972) Jumping on the moon Power output at different gravity values. Aerosp Med 43(4):408–414

    CAS  PubMed  Google Scholar 

  • Cavagna GA, Willems PA, Heglund NC (2000) The role of gravity in human walking pendular energy exchange, external work and optimal speed. J Physiol 528(3):657–668. https://doi.org/10.1111/j.1469-7793.2000.00657.x

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chekirda IF, Yermin AV (1977) Dynamics of cyclic and acyclic locomotion of the Soyuz-18 crew after a 63- day space mission. Kosm Biol Aviakosm Med 4:9–13

    Google Scholar 

  • Chekirda IF, Bogdashevskiy AV, Yeremin AV et al (1971) Coordination structure of walking of Soyuz-9 crew members be-fore and after flight. Kosm Biol Med 5:48–52

    Google Scholar 

  • Clarke AH, Grigull J, Mueller R et al (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134(3):322–334. https://doi.org/10.1007/s002210000476

    CAS  PubMed  CrossRef  Google Scholar 

  • Clément G, André-Deshays C (1987) Motor activity and visually induced postural reactions during two-g and zero-g phases of parabolic flight. Neurosci Lett 79(1–2):113–116. https://doi.org/10.1016/0304-3940(87)90681-1

    PubMed  CrossRef  Google Scholar 

  • Clément G, Lestienne F (1988) Adaptive modifications of postural attitude in conditions of weightlessness. Exp Brain Res 72(2):381–389. https://doi.org/10.1007/BF00250259

    PubMed  CrossRef  Google Scholar 

  • Clément G, Gurfinkel VS, Lestienne F et al (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57(1):61–72. https://doi.org/10.1007/BF00231132

    PubMed  CrossRef  Google Scholar 

  • Clément G, Gurfinkel VS, Lestienne F et al (1985) Changes of posture during transient perturbations in microgravity. Aviat Space Environ Med 56(7):666–671

    PubMed  Google Scholar 

  • Clément G, Darlot C, Petropoulos A et al (1995) Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight. Acta Otolaryngol 115(5):603–609. https://doi.org/10.3109/00016489509139374

    PubMed  CrossRef  Google Scholar 

  • Clément G, Reschke M, Wood S (2005) Neurovestibular and sensorimotor studies in space and earth benefits. Curr Pharm Biotechnol 6(4):267–283. https://doi.org/10.2174/1389201054553716

    PubMed  CrossRef  Google Scholar 

  • Collins JJ, de Luca CJ, Pavlik AE et al (1995) The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2. Exp Brain Res 107(1):145–150

    CAS  PubMed  CrossRef  Google Scholar 

  • Courtine G, Pozzo T (2004) Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks. Exp Brain Res 158(1):86–99. https://doi.org/10.1007/s00221-004-1877-2

    PubMed  CrossRef  Google Scholar 

  • Dai M, McGarvie L, Kozlovskaya I et al (1994) Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system. Exp Brain Res 102(1):45–56

    CAS  PubMed  CrossRef  Google Scholar 

  • D’Andrea SE, Perusek GP, Rajulu S et al (2005) Jumping in simulated and true microgravity: response to maximal efforts with three landing types. Aviat Space Environ Med 76(5):441–447

    PubMed  Google Scholar 

  • Demertzi A, van Ombergen A, Tomilovskaya E et al (2016) Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Struct Funct 221(5):2873–2876. https://doi.org/10.1007/s00429-015-1054-3

    PubMed  CrossRef  Google Scholar 

  • Di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibres to human motion. J Biomech 36(3):403–412

    PubMed  CrossRef  Google Scholar 

  • Dichgans J, Mauritz KH, Allum JH et al. (1976) Postural sway in normals and atactic patients: analysis of the stabilising and destabilizing effects of vision. Agressologie 17(C Spec No):15–24

    Google Scholar 

  • Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59(6):1888–1905

    CAS  PubMed  Google Scholar 

  • Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3(10):781–790. https://doi.org/10.1038/nrn939

    CAS  PubMed  CrossRef  Google Scholar 

  • Dietz V, Gollhofer A, Kleiber M et al (1992) Regulation of bipedal stance: dependency on “load” receptors. Exp Brain Res 89(1):229–231

    CAS  PubMed  CrossRef  Google Scholar 

  • Dietz V, Horstmann GA, Trippel M et al (1989) Human postural reflexes and gravity-an under water simulation. Neurosci Lett 106(3):350–355

    CAS  PubMed  CrossRef  Google Scholar 

  • Edgerton VR, Roy RR, Recktenwald MR et al (2000) Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity. J Gravit Physiol 7(3):45–52

    CAS  PubMed  Google Scholar 

  • Farley CT, McMahon TA (1992) Energetics of walking and running Insights from simulated reduced-gravity experiments. J Appl Physiol (1985) 73(6):2709–2712

    CAS  Google Scholar 

  • Ferris DP, Aagaard P, Simonsen EB et al (2001) Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol 530(Pt 1):167–180

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review microgravity and skeletal muscle. J Physiol 89(2):823–839

    CAS  Google Scholar 

  • Freyler K, Weltin E, Gollhofer A et al (2014) Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait Posture 40(2):291–296. https://doi.org/10.1016/j.gaitpost.2014.04.186

    CAS  PubMed  CrossRef  Google Scholar 

  • Freyler K, Gollhofer A, Colin R et al (2015) Reactive balance control in response to perturbation in unilateral stance interaction effects of direction, displacement and velocity on compensatory neuromuscular and kinematic responses. PLoS One 10(12):e0144529. https://doi.org/10.1371/journal.pone.0144529

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gambelli CN, Theisen D, Willems PA et al (2015) Motor control of landing from a jump in simulated hypergravity. PLoS One 10(10):e0141574. https://doi.org/10.1371/journal.pone.0141574

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Gambelli CN, Theisen D, Willems PA et al (2016) Motor control of landing from a countermovement jump in simulated microgravity. J Appl Physiol 120(10):1230–1240. https://doi.org/10.1152/japplphysiol.00993.2015

    CAS  PubMed  CrossRef  Google Scholar 

  • Gollhofer A, Kyrolainen H (1991) Neuromuscular control of the human leg extensor muscles in jump exercises under various stretch-load conditions. Int J Sports Med 12(1):34–40

    CAS  PubMed  CrossRef  Google Scholar 

  • Granacher U, Gollhofer A, Strass D (2006) Training induced adaptations in characteristics of postural reflexes in elderly men. Gait Posture 24(4):459–466. https://doi.org/10.1016/j.gaitpost.2005.12.007

    CAS  PubMed  CrossRef  Google Scholar 

  • Grossman GE, Leigh RJ, Abel LA et al (1988) Frequency and velocity of rotational head perturbations during locomotion. Exp Brain Res 70(3):470–476

    CAS  PubMed  CrossRef  Google Scholar 

  • Guimaraes RM, Isaacs B (1980) Characteristics of the gait in old people who fall. Int Rehabil Med 2(4):177–180

    CAS  PubMed  CrossRef  Google Scholar 

  • Hallgren E, Kornilova L, Fransen E et al (2016) Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight. J Neurophysiol 115(6):3045–3051. https://doi.org/10.1152/jn.00065.2016

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Hausdorff JM (2005) Gait variability methods, modeling and meaning. J Neuroeng Rehabil 2:19. https://doi.org/10.1186/1743-0003-2-19

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol (1985) 71(3):863–870

    CAS  Google Scholar 

  • Hernandez-Korwo R, Kozlovskaya IB, Kreydich YV et al (1983) Effect of seven-day space flight on structure and function of human locomotor system. Kosm Biol Aviakosm Med 17:37–44

    Google Scholar 

  • Hlavacka F, Kornilova LN (2004) Velocity of head movements and sensory-motor adaptation during and after short spaceflight. J Gravit Physiol 11(2):13–16

    Google Scholar 

  • Hlavacka F, Dzurkova O, Kornilova LN (2001) Vestibular and somatosensory interaction during recovery of balance instability after spaceflight. J Gravit Physiol 8(1):89–92

    Google Scholar 

  • Homick JL, Reschke MF (1977) Postural equilibrium following exposure to weightless space flight. Acta Otolaryngol 83(1-6):455–464. https://doi.org/10.3109/00016487709128871

    CAS  CrossRef  Google Scholar 

  • Hortobágyi T, Solnik S, Gruber A et al (2009) Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait Posture 29(4):558–564. https://doi.org/10.1016/j.gaitpost.2008.12.007

    PubMed  CrossRef  Google Scholar 

  • Hunt KD (1994) The evolution of human bipedality Ecology and functional morphology. J Hum Evol 26(3):183–202

    CrossRef  Google Scholar 

  • Hytönen M, Pyykkö I, Aalto H et al (1993) Postural control and age. Acta Otolaryngol 113(2):119–122

    PubMed  CrossRef  Google Scholar 

  • Kalb R, Solomon D (2007) Space exploration, Mars, and the nervous system. Arch Neurol 64(4):485–490. https://doi.org/10.1001/archneur.64.4.485

    PubMed  CrossRef  Google Scholar 

  • Kenyon RV, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res 64(2):335–346

    CAS  PubMed  CrossRef  Google Scholar 

  • Komi PV (1984) Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev 12:81–121

    CAS  PubMed  CrossRef  Google Scholar 

  • Kornilova LN, Naumov IA, Azarov KA et al (2012) Gaze control and vestibular-cervical-ocular responses after prolonged exposure to microgravity. Aviat Space Environ Med 83(12):1123–1134

    PubMed  CrossRef  Google Scholar 

  • Kozlovskaya IB, Kreidich Y, Oganov VS et al (1981) Pathophysiology of motor functions in prolonged manned space flights. Acta Astronaut 8(9–10):1059–1072

    CAS  PubMed  CrossRef  Google Scholar 

  • Kozlovskaya IB, Aslanova IF, Grigorieva LS et al (1982) Experimental analysis of motor effects of weightlessness. Physiologist 25(6):49–52

    Google Scholar 

  • Kozlovskaya IB, Barmin VA, Kreidich Y et al (1985) The effects of real and simulated microgravity on vestibulo-oculomotor interaction. Physiologist 28(6 Suppl):51–56

    Google Scholar 

  • Kozlovskaya IB, Barmin VA, Stepantsov VI et al (1990) Results of studies of motor functions in long-term space flights. Physiologist 33(Suppl):1–3

    Google Scholar 

  • Kramer A, Ritzmann R, Gruber M et al (2012) Leg stiffness can be maintained during reactive hopping despite modified acceleration conditions. J Appl Biomech 45(10):1816–1822. https://doi.org/10.1016/j.jbiomech.2012.04.014

    CAS  CrossRef  Google Scholar 

  • Lackner JR, DiZio P (1992) Gravitoinertial force level affects the appreciation of limb position during muscle vibration. Brain Res 592(1–2):175–180

    CAS  PubMed  CrossRef  Google Scholar 

  • Lackner JR, DiZio P (1993) Multisensory, cognitive, and motor influences on human spatial orientation in weightlessness. J Vestibul Res 3(3):361–372

    CAS  Google Scholar 

  • Lackner JR, DiZio P (1996) Motor function in microgravity: movement in weightlessness. Curr Opin Neurobiol 6(6):744–750

    CAS  PubMed  CrossRef  Google Scholar 

  • Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130(1):2–26

    CAS  PubMed  CrossRef  Google Scholar 

  • Lambertz D, Perot C, Kaspranski R et al (2001) Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol 90(1):179–188

    CAS  PubMed  Google Scholar 

  • Layne CS, Spooner BS (1994) Microgravity effects on “postural” muscle activity patterns. Adv Space Res 14(8):381–384

    CAS  PubMed  CrossRef  Google Scholar 

  • Layne CS, McDonald PV, Bloomberg JJ (1997) Neuromuscular activation patterns during treadmill walking after space flight. Exp Brain Res 113(1):104–116

    CAS  PubMed  CrossRef  Google Scholar 

  • Layne CS, Mulavara AP, McDonald PV et al (2001) Effect of long-duration spaceflight on postural control during self-generated perturbations. J Appl Physiol 90(3):997–1006

    CAS  PubMed  Google Scholar 

  • Lestienne F, Gurfinkel V (1988) Postural control in weightlessness a dual process underlying adaptation to an unusual environment. Trends Neurosci 11(8):359–363

    CAS  PubMed  CrossRef  Google Scholar 

  • Mader TH, Gibson CR, Pass AF et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10):2058–2069. https://doi.org/10.1016/j.ophtha.2011.06.021

    PubMed  CrossRef  Google Scholar 

  • Margaria R (1973) Biomechanics of locomotion in subgravity. Adv Space Res 11:177–185

    CAS  Google Scholar 

  • Margaria R, Cavagna GA (1964) Human locomotion in subgravity. Aerosp Med 35:1140–1146

    CAS  PubMed  Google Scholar 

  • Masani K, Sayenko DG, Vette AH (2013) What triggers the continuous muscle activity during upright standing? Gait Posture 37(1):72–77. https://doi.org/10.1016/j.gaitpost.2012.06.006

    PubMed  CrossRef  Google Scholar 

  • Massion J (1998) Postural control systems in developmental perspective. Neurosci Biobehav Rev 22(4):465–472

    CAS  PubMed  CrossRef  Google Scholar 

  • Massion J, Alexandrov A, Frolov A (2005) Why and how are posture and movement coordinated? In: Mori S, Pierce PA (eds) International symposium: brain mechanisms for the integration of posture and movement, Okazaki, Japan, March 2001, vol 143. Elsevier, Amsterdam, pp 13–27

    Google Scholar 

  • Mauritz KH, Dietz V (1980) Characteristics of postural instability induced by ischemic blocking of leg afferents. Exp Brain Res 38(1):117–119

    CAS  PubMed  CrossRef  Google Scholar 

  • McDonagh MJN, Duncan A (2002) Interaction of pre-programmed control and natural stretch reflexes in human landing movements. J Physiol 544(Pt 3):985–994

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • McDonald PV, Basdogan C, Bloomberg JJ et al (1996) Lower limb kinematics during treadmill walking after space flight Implications for gaze stabilization. Exp Brain Res 112(2):325–334

    CAS  PubMed  CrossRef  Google Scholar 

  • Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—a conceptual model. Brain Res Rev 28(1–2):118–135. https://doi.org/10.1016/S0165-0173(98)00032-0

    CAS  PubMed  CrossRef  Google Scholar 

  • Minetti AE (1998) The biomechanics of skipping gaits a third locomotion paradigm? Proc Biol Sci 265(1402):1227–1235

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Minetti AE (2001) Invariant aspects of human locomotion in different gravitational environments. Acta Astronaut 49(3–10):191–198

    CAS  PubMed  CrossRef  Google Scholar 

  • Miyoshi T, Nozaki D, Sekiguchi H et al (2003) Somatosensory graviception inhibits soleus H-reflex during erect posture in humans as revealed by parabolic flight experiment. Exp Brain Res 150(1):109–113. https://doi.org/10.1007/s00221-003-1414-8

    PubMed  CrossRef  Google Scholar 

  • Mulavara AP, Ruttley T, Cohen HS et al (2012) Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight. J Vestib Res 22(2):153–166. https://doi.org/10.3233/VES-2011-0435

    CAS  PubMed  Google Scholar 

  • Nagai K, Yamada M, Uemura K et al (2011) Differences in muscle coactivation during postural control between healthy older and young adults. Arch Gerontol Geriatr 53(3):338–343. https://doi.org/10.1016/j.archger.2011.01.003

    PubMed  CrossRef  Google Scholar 

  • Nakazawa K, Miyoshi T, Sekiguchi H et al (2004) Effects of loading and unloading of lower limb joints on the soleus H-reflex in standing humans. Clin Neurophysiol 115(6):1296–1304. https://doi.org/10.1016/j.clinph.2004.01.016

    PubMed  CrossRef  Google Scholar 

  • Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26(1):59–72

    CAS  PubMed  CrossRef  Google Scholar 

  • Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30(1):13–24

    CAS  PubMed  CrossRef  Google Scholar 

  • Normand MC, Lagasse PP, Rouillard CA et al (1982) Modifications occurring in motor programs during learning of a complex task in man. Brain Res 241(1):87–93

    CAS  PubMed  CrossRef  Google Scholar 

  • Paige LD, Kama WN (1965) Effect of transient weightlessness on visual acuity. J Eng Psychol 4(2):33–44

    CAS  PubMed  Google Scholar 

  • Paloski WH (1998) Vestibulospinal adaptation to microgravity. Otolaryngol Head Neck Surg 118(3 Pt 2):39–44. https://doi.org/10.1016/S0194-59989870008-7

    CrossRef  Google Scholar 

  • Paloski WH, Reschke MF, Black FO et al (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754

    CAS  PubMed  CrossRef  Google Scholar 

  • Paloski WH, Black FO, Reschke MF et al (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14(1):9–17

    CAS  PubMed  Google Scholar 

  • Paloski WH, Reschke MF, Black FO (1999) Recovery of postural equilibrium control following space flight. In: Sawin CF (ed) Extended duration orbiter medical project. NASA Johnson Space Center, Houston, pp 5.4-1–5.5-16

    Google Scholar 

  • Pavei G, Minetti AE (2016) Hopping locomotion at different gravity metabolism and mechanics in humans. J Appl Physiol 120(10):1223–1229. https://doi.org/10.1152/japplphysiol.00839.2015

    PubMed  CrossRef  Google Scholar 

  • Pletser V, Winter J, Duclos F et al (2012) The first joint European partial-G parabolic flight campaign at Moon and Mars gravity levels for science and exploration. Microgravity Sci Technol 24(6):383–395. https://doi.org/10.1007/s12217-012-9304-y

    CrossRef  Google Scholar 

  • Pöyhönen T, Avela J (2002) Effect of head-out water immersion on neuromuscular function of the plantarflexor muscles. Aviat Space Environ Med 73(12):1215–1218

    PubMed  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82(1):97–106

    CAS  PubMed  CrossRef  Google Scholar 

  • Pozzo T, Papaxanthis C, Stapley P et al (1998) The sensorimotor and cognitive integration of gravity. Brain Res Rev 28(1–2):92–101

    CAS  PubMed  CrossRef  Google Scholar 

  • Reschke MF, Anderson DJ, Homick J (1984) Vestibulospinal reflexes as a function of microgravity. Science 225(4658):212–214. https://doi.org/10.1126/science.6729475

    CAS  PubMed  CrossRef  Google Scholar 

  • Reschke MF, Anderson DJ, Homick J (1986) Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight. Exp Brain Res 64(2):367–379. https://doi.org/10.1007/BF00237753

    CAS  PubMed  CrossRef  Google Scholar 

  • Reschke MF, Bloomberg JJ, Paloski WH et al (1994) Physiologic adaptation to space flight: neurophysiologic aspects: sensory and sensory-motor function. In: Nicogossian AE, Leach CL, Pool SL (eds) Space physiology and medicine. Lea & Febiger, Philadelphia, pp 261–285

    Google Scholar 

  • Reschke MF, Bloomberg JJ, Harm DL et al (1998) Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Rev 28(1–2):102–117

    CAS  PubMed  CrossRef  Google Scholar 

  • Ritzmann R, Freyler K, Weltin E et al (2015) Load dependency of postural control – kinematic and neuromuscular changes in response to over and under load conditions. PLoS One 10(6):e0128400. https://doi.org/10.1371/journal.pone.0128400

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Ritzmann R, Freyler K, Krause A et al (2016) Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development. J Appl Physiol 121(5):1187–1195. https://doi.org/10.1152/japplphysiol.00692.2016

    PubMed  CrossRef  Google Scholar 

  • Roll JP, Popov K, Gurfinkel V et al (1993) Sensorimotor and perceptual function of muscle proprioception in microgravity. J Vestib Res 3(3):259–273

    CAS  PubMed  Google Scholar 

  • Ruegg DG, Kakebeeke TH, Gabriel J-P et al (2003) Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest. Clin Neurophysiol 114(1):86–93

    PubMed  CrossRef  Google Scholar 

  • Solopova IA, Kazennikov OV, Deniskina NB et al (2003) Postural instability enhances motor responses to transcranial magnetic stimulation in humans. Neurosci Lett 337(1):25–28

    CAS  PubMed  CrossRef  Google Scholar 

  • Sousa ASP, Silva A, Tavares JMRS (2012) Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review. Somatosens Mot Res 29(4):131–143. https://doi.org/10.3109/08990220.2012.725680

    PubMed  CrossRef  Google Scholar 

  • Strzalkowski NDJ, Lowrey CR, Perry SD et al (2015) Selective weighting of cutaneous receptor feedback and associated balance impairments following short duration space flight. Neurosci Lett 592:94–98. https://doi.org/10.1016/j.neulet.2015.02.046

    CAS  PubMed  CrossRef  Google Scholar 

  • Taube W, Leukel C, Gollhofer A (2012) How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev 40(2):106–115

    PubMed  CrossRef  Google Scholar 

  • Tokuno CD, Taube W, Cresswell AG (2009) An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol (Oxf) 195(3):385–395

    CAS  PubMed  CrossRef  Google Scholar 

  • Uri JJ, Linder BJ, Moore TP et al (1989) Saccadic eye movements during space flight. NASA Tech Memo 100(475):1–9

    Google Scholar 

  • Vico L, Collet P, Guignandon A et al (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215):1607–1611

    CAS  PubMed  CrossRef  Google Scholar 

  • Watt DG, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64(2):308–315

    CAS  PubMed  CrossRef  Google Scholar 

  • Winter DA (2009) Biomechanics and motor control of human movement. Wiley, Hoboken, NJ

    CrossRef  Google Scholar 

  • Winter DA, Patla AE, Prince F et al (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80(3):1211–1221

    CAS  PubMed  Google Scholar 

  • Winter DA, Patla AE, Rietdyk S et al (2001) Ankle muscle stiffness in the control of balance during quiet standing. J Neurophysiol 85(6):2630–2633

    CAS  PubMed  Google Scholar 

  • Young LR, Oman CM, Watt DG et al (1984) Spatial orientation in weightlessness and readaptation to earth’s gravity. Science 225(4658):205–208

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ritzmann .

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Ritzmann, R., Gollhofer, A., Freyler, K. (2017). Posture and Locomotion. In: Sensory Motor and Behavioral Research in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-68201-3_1

Download citation