Skip to main content

Syndromic Obesity

  • Chapter
  • First Online:

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

While adiposity is most commonly due to excess caloric intake, it is well established that genetic mutations or chromosomal abnormalities can cause excess weight gain. The term “syndromic obesity” is used to describe obese children and adults with cognitive delay, dysmorphic features, organ-specific abnormalities, hyperphagia, and/or other signs of hypothalamic dysfunction (Nature Rev. Genet 6:221–34, 2005; Farooqi and O’Rahilly, Annu Rev. Med 56:443–58, 2005). Obesity syndromes may be inherited in either an autosomal or an X-linked pattern and can be caused by de novo genetic mutations. It is important to identify syndromic causes of obesity as they are often associated with comorbidities that require additional evaluation and treatment.

This is a preview of subscription content, log in via an institution.

References

  1. Bel CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet. 2005;6(3):221–34.

    Article  CAS  Google Scholar 

  2. Farooqi IS, O'Rahilly S. Monogenic obesity in humans. Annu Rev Med. 2005;56:443–58.

    Article  CAS  PubMed  Google Scholar 

  3. Prader A, Labhart A, Ein Syndrom HW, Adipositas v. Kleinwuchs, Kryptorchismus und Oligophrenie nach myotoniertigem Zustand im Neugeborenalter. Schweiz Med Wochenschr. 1956;86:1260–1.

    Google Scholar 

  4. Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet. 2000;97(2):136–46.

    Article  CAS  PubMed  Google Scholar 

  5. Chung WK. An overview of Monogenic and Syndromic obesities in humans. Pediatr Blood Cancer. 2012;58(1):122–8.

    Article  PubMed  Google Scholar 

  6. Butler MG. Prader-Willi syndrome: obesity due to genomic imprinting. Curr Genomics. 2011;12(3):204–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Irizarry KA, Miller M, Freemark M, Haqq AM. Prader Willi syndrome; genetics, metabolomics, hormonal function, and new approaches to therapy. Adv Pediatr Infect Dis. 2016;63(1):47–77.

    Google Scholar 

  8. Miller JL, Lynn CH, Driscoll DC, Goldstone AP, Gold JA, Kimonis V, et al. Nutritional phases in Prader-Willi syndrome. Am J Med Genet A. 2011;155a(5):1040–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. de Lind van Wijngaarden RF, Otten BJ, Festen DA, Joosten KF, de Jong FH, Sweep FC, et al. High prevalence of central adrenal insufficiency in patients with Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(5):1649–54.

    Article  PubMed  CAS  Google Scholar 

  10. DiMario FJ Jr, Dunham B, Burleson JA, Moskovitz J, Cassidy SB. An evaluation of autonomic nervous system function in patients with Prader-Willi syndrome. Pediatrics. 1994;93(1):76–81.

    PubMed  Google Scholar 

  11. Emerick J, Vogt K. Endocrine manifestations and management of Prader-Willi syndrome. Int J Pediatr Endocrinol. 2013;2013(1):14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yang L, Zhan GD, Ding JJ, Wang HJ, Ma D, Huang GY, et al. Psychiatric illness and intellectual disability in the Prader-Willi syndrome with different molecular defects–a meta analysis. PLoS One. 2013;8(8):e72640.

    Google Scholar 

  13. Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet. 2001;2:153–75.

    Article  CAS  PubMed  Google Scholar 

  14. Nicholls RD, Saitoh S, Horsthemke B. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet. 1998;14(5):194–200.

    Article  CAS  PubMed  Google Scholar 

  15. Ohta T, Gray TA, Rogan PK, Buiting K, Gabriel JM, Saitoh S, et al. Imprinting-mutation mechanisms in Prader-Willi syndrome. Am J Hum Genet. 1999;64(2):397–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet. 2001;10(23):2687–700.

    Article  CAS  PubMed  Google Scholar 

  17. Bervini S, Herzog H. Mouse models of Prader–Willi syndrome: a systematic review. Front Neuroendocrinol. 2013;34(2):107–19.

    Article  CAS  PubMed  Google Scholar 

  18. Niinobe M, Koyama K, Yoshikawa K. Cellular and subcellular localization of necdin in fetal and adult mouse brain. Dev Neurosci. 2000;22(4):310–9.

    Article  CAS  PubMed  Google Scholar 

  19. Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, et al. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum Mol Genet. 2000;9(20):3101–10.

    Article  CAS  PubMed  Google Scholar 

  20. Lee S, Kozlov S, Hernandez L, Chamberlain SJ, Brannan CI, Stewart CL, et al. Expression and imprinting of MAGEL2 suggest a role in Prader-willi syndrome and the homologous murine imprinting phenotype. Hum Mol Genet. 2000;9(12):1813–9.

    Article  CAS  PubMed  Google Scholar 

  21. Miller NLG, Wevrick R, Mellon PL. Necdin, a Prader–Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2009;18(2):248–60.

    Article  CAS  PubMed  Google Scholar 

  22. Bischof JM, Stewart CL, Wevrick R. Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader-Willi syndrome. Hum Mol Genet. 2007;16(22):2713–9.

    Article  CAS  PubMed  Google Scholar 

  23. Mercer RE, Michaelson SD, Chee MJ, Atallah TA, Wevrick R, Colmers WF. Magel2 Is required for leptin-mediated depolarization of POMC neurons in the hypothalamic arcuate nucleus in mice. PLoS Genet. 2013;9(1):e1003207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pravdivyi I, Ballanyi K, Colmers WF, Wevrick R. Progressive postnatal decline in leptin sensitivity of arcuate hypothalamic neurons in the Magel2-null mouse model of Prader-Willi syndrome. Hum Mol Genet. 2015;24(15):4276–83.

    Article  CAS  PubMed  Google Scholar 

  25. Gallagher RC, Pils B, Albalwi M, Francke U. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet. 2002;71(3):669–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding F, Li HH, Zhang S, Solomon NM, Camper SA, Cohen P, et al. SnoRNA Snord116 deletion causes growth deficiency and Hyperphagia in mice. PLoS One. 2008;3(3):e1709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Burnett LC, LeDuc CA, Sulsona CR, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127(1):293–305.

    Article  PubMed  Google Scholar 

  28. Holm VA, Cassidy SB, Butler MG, Hanchett JM, Greenswag LR, Whitman BY, et al. Prader-Willi syndrome: consensus diagnostic criteria. Pediatrics. 1993;91(2):398–402.

    CAS  PubMed  Google Scholar 

  29. Gunay-Aygun M, Schwartz S, Heeger S, O'Riordan MA, Cassidy SB. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics. 2001;108(5):E92.

    Article  CAS  PubMed  Google Scholar 

  30. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Investig. 2015;38(12):1249–63.

    Article  CAS  Google Scholar 

  31. Erdie-Lalena CR, Holm VA, Kelly PC, Frayo RS, Cummings DE. Ghrelin levels in young children with Prader-Willi syndrome. J Pediatr. 2006;149(2):199–204.

    Article  CAS  PubMed  Google Scholar 

  32. Cummings DE, Clement K, Purnell JQ, Vaisse C, Foster KE, Frayo RS, et al. Elevated plasma ghrelin levels in Prader Willi syndrome. Nat Med. 2002;8(7):643–4.

    Article  CAS  PubMed  Google Scholar 

  33. Haqq AM, Grambow SC, Muehlbauer M, Newgard CB, Svetkey LP, Carrel AL, et al. Ghrelin concentrations in Prader-Willi syndrome (PWS) infants and children: changes during development. Clin Endocrinol. 2008;69(6):911–20.

    Article  CAS  Google Scholar 

  34. Goldstone AP, Holland AJ, Butler JV, Whittington JE. Appetite hormones and the transition to hyperphagia in children with Prader-Willi syndrome. Int J Obes. 2012;36(12):1564–70.

    Article  CAS  Google Scholar 

  35. Gumus Balikcioglu P, Balikcioglu M, Muehlbauer MJ, Purnell JQ, Broadhurst D, Freemark M, et al. Macronutrient regulation of ghrelin and peptide YY in pediatric obesity and Prader-Willi syndrome. J Clin Endocrinol Metab. 2015;100(10):3822–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Holm VA, Pipes PL. Food and children with Prader-Willi syndrome. Am J Dis Child. 1976;130(10):1063–7.

    CAS  PubMed  Google Scholar 

  37. Arble DM, Pressler JW, Sorrell J, Wevrick R, Sandoval DA. Sleeve gastrectomy leads to weight loss in the Magel2 knockout mouse. Surg Obes Relat Dis. 2016;12(10):1795–802.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Alqahtani AR, Elahmedi MO, Al Qahtani AR, Lee J, Butler MG. Laparoscopic sleeve gastrectomy in children and adolescents with Prader-Willi syndrome: a matched-control study. Surg Obes Relat Dis. 2016;12(1):100–10.

    Article  PubMed  Google Scholar 

  39. Karamanakos SN, Vagenas K, Kalfarentzos F, Alexandrides TK. Weight loss, appetite suppression, and changes in fasting and postprandial ghrelin and peptide-YY levels after roux-en-Y gastric bypass and sleeve gastrectomy: a prospective, double blind study. Ann Surg. 2008;247(3):401–7.

    Article  PubMed  Google Scholar 

  40. Ochner CN, Gibson C, Shanik M, Goel V, Geliebter A. Changes in neurohormonal gut peptides following bariatric surgery. Int J Obes. 2011;35(2):153–66.

    Article  CAS  Google Scholar 

  41. Stevenson DA, Anaya TM, Clayton-Smith J, Hall BD, Van Allen MI, Zori RT, et al. Unexpected death and critical illness in Prader–Willi syndrome: report of ten individuals. Am J Med Genet A. 2004;124A(2):158–64.

    Article  PubMed  Google Scholar 

  42. Corrias A, Grugni G, Crino A, Di Candia S, Chiabotto P, Cogliardi A, et al. Assessment of central adrenal insufficiency in children and adolescents with Prader-Willi syndrome. Clin Endocrinol. 2012;76(6):843–50.

    Article  CAS  Google Scholar 

  43. Goldstone AP, Holland AJ, Hauffa BP, Hokken-Koelega AC, Tauber M. Recommendations for the diagnosis and management of Prader-Willi syndrome. J Clin Endocrinol Metab. 2008;93(11):4183–97.

    Article  CAS  PubMed  Google Scholar 

  44. Akefeldt A, Tornhage CJ, Gillberg C. A woman with Prader-Willi syndrome gives birth to a healthy baby girl. Dev Med Child Neurol. 1999;41(11):789–90.

    Article  CAS  PubMed  Google Scholar 

  45. Schulze A, Mogensen H, Hamborg-Petersen B, Graem N, Ostergaard JR, Brondum-Nielsen K. Fertility in Prader-Willi syndrome: a case report with Angelman syndrome in the offspring. Acta Paediatr. 2001;90(4):455–9.

    Article  CAS  PubMed  Google Scholar 

  46. Festen DA, Wevers M, Lindgren AC, Bohm B, Otten BJ, Wit JM, et al. Mental and motor development before and during growth hormone treatment in infants and toddlers with Prader-Willi syndrome. Clin Endocrinol. 2008;68(6):919–25.

    Article  CAS  Google Scholar 

  47. Festen DAM, De Lind van Wijngaarden R, Van Eekelen M, Otten BJ, Wit JM, Duivenvoorden HJ, et al. Randomized controlled GH trial: effects on anthropometry, body composition and body proportions in a large group of children with Prader–Willi syndrome. Clin Endocrinol. 2008;69(3):443–51.

    Article  CAS  Google Scholar 

  48. Myers SE, Whitman BY, Carrel AL, Moerchen V, Bekx MT, Allen DB. Two years of growth hormone therapy in young children with Prader-Willi syndrome: physical and neurodevelopmental benefits. Am J Med Genet A. 2007;143a(5):443–8.

    Article  CAS  PubMed  Google Scholar 

  49. Carrel AL, Myers SE, Whitman BY, Allen DB. Benefits of long-term GH therapy in Prader-Willi syndrome: a 4-year study. J Clin Endocrinol Metab. 2002;87(4):1581–5.

    Article  CAS  PubMed  Google Scholar 

  50. Carrel AL, Myers SE, Whitman BY, Allen DB. Growth hormone improves body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome: a controlled study. J Pediatr. 1999;134(2):215–21.

    Article  CAS  PubMed  Google Scholar 

  51. Eiholzer U, l'Allemand D. Growth hormone normalises height, prediction of final height and hand length in children with Prader-Willi syndrome after 4 years of therapy. Horm Res. 2000;53(4):185–92.

    CAS  PubMed  Google Scholar 

  52. Myers SE, Carrel AL, Whitman BY, Allen DB. Sustained benefit after 2 years of growth hormone on body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome. J Pediatr. 2000;137(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  53. Carrel AL, Myers SE, Whitman BY, Allen DB. Sustained benefits of growth hormone on body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome are dose-dependent. J Pediatr Endocrinol Metab. 2001;14(8):1097–105.

    Article  CAS  PubMed  Google Scholar 

  54. Haqq AM, Stadler DD, Jackson RH, Rosenfeld RG, Purnell JQ, LaFranchi SH. Effects of growth hormone on pulmonary function, sleep quality, behavior, cognition, growth velocity, body composition, and resting energy expenditure in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88(5):2206–12.

    Article  CAS  PubMed  Google Scholar 

  55. Bakker B, Maneatis T, Lippe B. Sudden death in Prader-Willi syndrome: brief review of five additional cases. Concerning the article by U. Eiholzer et al.: deaths in children with Prader-Willi syndrome. A contribution to the debate about the safety of growth hormone treatment in children with PWS (Horm res 2005;63:33-39). Horm Res. 2007;67(4):203–4.

    CAS  PubMed  Google Scholar 

  56. Tauber M, Diene G, Molinas C, Hebert M. Review of 64 cases of death in children with Prader-Willi syndrome (PWS). Am J Med Genet A. 2008;146a(7):881–7.

    Article  CAS  PubMed  Google Scholar 

  57. Schrander-Stumpel CT, Curfs LM, Sastrowijoto P, Cassidy SB, Schrander JJ, Fryns JP. Prader-Willi syndrome: causes of death in an international series of 27 cases. Am J Med Genet A. 2004;124a(4):333–8.

    Article  PubMed  Google Scholar 

  58. Vogels A, Van Den Ende J, Keymolen K, Mortier G, Devriendt K, Legius E, et al. Minimum prevalence, birth incidence and cause of death for Prader-Willi syndrome in Flanders. Eur J Hum Genet. 2004;12(3):238–40.

    Article  CAS  PubMed  Google Scholar 

  59. Van Vliet G, Deal CL, Crock PA, Robitaille Y, Oligny LL. Sudden death in growth hormone-treated children with Prader-Willi syndrome. J Pediatr. 2004;144(1):129–31.

    Article  PubMed  Google Scholar 

  60. DelParigi A, Tschop M, Heiman ML, Salbe AD, Vozarova B, Sell SM, et al. High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome. J Clin Endocrinol Metab. 2002;87(12):5461–4.

    Article  CAS  PubMed  Google Scholar 

  61. Haqq AM, Farooqi S, O'Rahilly S, Stadler DD, Rosenfeld RG, Pratt KL, et al. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88:174–8.

    Article  CAS  PubMed  Google Scholar 

  62. Haqq AM, Stadler DD, Rosenfeld RG, Pratt KL, Weigle DS, Frayo RS, et al. Circulating ghrelin levels are suppressed by meals and octreotide therapy in children with Prader-Willi syndrome. J Clin Endocrinol Metab. 2003;88(8):3573–6.

    Article  CAS  PubMed  Google Scholar 

  63. Tan TM, Vanderpump M, Khoo B, Patterson M, Ghatei MA, Goldstone AP. Somatostatin infusion lowers plasma ghrelin without reducing appetite in adults with Prader-Willi syndrome. J Clin Endocrinol Metab. 2004;89(8):4162–5.

    Article  CAS  PubMed  Google Scholar 

  64. De Waele K, Ishkanian SL, Bogarin R, Miranda CA, Ghatei MA, Bloom SR, et al. Long-acting octreotide treatment causes a sustained decrease in ghrelin concentrations but does not affect weight, behaviour and appetite in subjects with Prader-Willi syndrome. Eur J Endocrinol. 2008;159(4):381–8.

    Article  PubMed  CAS  Google Scholar 

  65. Balikcioglu PG, Balikcioglu M, Muehlbauer MJ, Purnell JQ, Broadhurst D, Freemark M, et al. Macronutrient regulation of ghrelin and peptide YY in pediatric obesity and Prader-Willi syndrome. J Clin Endocrinol Metabol. 2015;100(10):3822–31.

    Article  CAS  Google Scholar 

  66. Goldstone AP, Thomas EL, Brynes AE, Bell JD, Frost G, Saeed N, et al. Visceral adipose tissue and metabolic complications of obesity are reduced in Prader-Willi syndrome female adults: evidence for novel influences on body fat distribution. J Clin Endocrinol Metab. 2001;86(9):4330–8.

    Article  CAS  PubMed  Google Scholar 

  67. Orsso CE, Mackenzie M, Alberga AS, Sharma AM, Richer L, Rubin DA, et al. The use of magnetic resonance imaging to characterize abnormal body composition phenotypes in youth with Prader-Willi syndrome. Metabolism. 2017;69:67–75.

    Article  CAS  PubMed  Google Scholar 

  68. Haqq AM, Muehlbauer M, Svetkey LP, Newgard CB, Purnell JQ, Grambow SC, et al. Altered distribution of adiponectin isoforms in children with Prader-Willi syndrome (PWS): association with insulin sensitivity and circulating satiety peptide hormones. Clin Endocrinol. 2007;67(6):944–51.

    Article  CAS  Google Scholar 

  69. Irizarry KA, Bain J, Butler MG, Ilkayeva O, Muehlbauer M, Haqq AM, et al. Metabolic profiling in Prader–Willi syndrome and nonsyndromic obesity: sex differences and the role of growth hormone. Clin Endocrinol. 2015;83(6):797–805.

    Article  CAS  Google Scholar 

  70. Wade CK, De Meersman RE, Angulo M, Lieberman JS, Downey JA. Prader-Willi syndrome fails to alter cardiac autonomic modulation. Clin Auton Res. 2000;10(4):203–6.

    Article  CAS  PubMed  Google Scholar 

  71. Albright F, Burnett CH, Smith PH, Parson W. Pseudohypoparathyroidism: an example of Sebright-Bantam syndrome. Endocrinology. 1942;30:922–32.

    CAS  Google Scholar 

  72. Levine MA, Germain-Lee E, Jan de Beur S. Genetic basis for resistance to parathyroid hormone. Horm Res. 2003;60(Suppl 3):87–95.

    CAS  PubMed  Google Scholar 

  73. Albright F, Forbes AP, Henneman PH. Pseudo-pseudohypoparathyroidism. Trans Assoc Am Phys. 1952;65:337–50.

    CAS  PubMed  Google Scholar 

  74. Ong KK, Amin R, Dunger DB. Pseudohypoparathyroidism–another monogenic obesity syndrome. Clin Endocrinol. 2000;52(3):389–91.

    Google Scholar 

  75. Chen M, Wang J, Dickerson KE, Kelleher J, Xie T, Gupta D, et al. Central nervous system imprinting of the G protein Gsα and its role in metabolic regulation. Cell Metab. 2009;9(6):548–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Roizen JD, Danzig J, Groleau V, McCormack S, Casella A, Harrington J, et al. Resting energy expenditure is decreased in Pseudohypoparathyroidism type 1A. J Clin Endocrinol Metab. 2016;101(3):880–8.

    Article  CAS  PubMed  Google Scholar 

  77. Miric A, Vechio JD, Levine MA. Heterogeneous mutations in the gene encoding the alpha-subunit of the stimulatory G protein of adenylyl cyclase in Albright hereditary osteodystrophy. J Clin Endocrinol Metab. 1993;76(6):1560–8.

    CAS  PubMed  Google Scholar 

  78. Weinstein LS, Liu J, Sakamoto A, Xie T, Chen M. Minireview: GNAS: normal and abnormal functions. Endocrinology. 2004;145(12):5459–64.

    Article  CAS  PubMed  Google Scholar 

  79. Nakamoto JM, Sandstrom AT, Brickman AS, Christenson RA, Van Dop C. Pseudohypoparathyroidism type Ia from maternal but not paternal transmission of a Gsalpha gene mutation. Am J Med Genet. 1998;77(4):261–7.

    Article  CAS  PubMed  Google Scholar 

  80. Davies SJ, Hughes HE. Imprinting in Albright's hereditary osteodystrophy. J Med Genet. 1993;30(2):101–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laurence JZ, Moon RC. Four cases of “retinitis pigmentosa” occurring in the same family, and accompanied by general imperfections of development. 1866. Obes Res. 1995;3(4):400–3.

    Article  CAS  PubMed  Google Scholar 

  82. Bardet G. Sur un syndrome d'obesite congenitale avec polydactylie et retinite pigmentaire (contribution a l'etude des formes cliniques de l'obesite hypophysaire). These de Paris (Le Grand). 1920;470:107.

    Google Scholar 

  83. A B. Ein Geschwister mit adiposogenitaler Dystrophie. Dtsh Med Wochenschr. 1922;48:1630.

    Google Scholar 

  84. Beales PL, Warner AM, Hitman GA, Thakker R, Flinter FA. Bardet-Biedl syndrome: a molecular and phenotypic study of 18 families. J Med Genet. 1997;34(2):92–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klein D, Ammann F. The syndrome of Laurence-Moon-Bardet-Biedl and allied diseases in Switzerland. Clinical, genetic and epidemiological studies. J Neurol Sci. 1969;9(3):479–513.

    Article  CAS  PubMed  Google Scholar 

  86. Farag TI, Teebi AS. High incidence of Bardet Biedl syndrome among the Bedouin. Clin Genet. 1989;36(6):463–4.

    Article  CAS  PubMed  Google Scholar 

  87. Green JS, Parfrey PS, Harnett JD, Farid NR, Cramer BC, Johnson G, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N Engl J Med. 1989;321(15):1002–9.

    Article  CAS  PubMed  Google Scholar 

  88. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet. 1999;36(6):437–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Suspitsin EN, Imyanitov EN. Bardet-Biedl Syndrome. Mol Syndromol. 2016;7(2):62–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. M'Hamdi O, Ouertani I, Chaabouni-Bouhamed H. Update on the genetics of bardet-biedl syndrome. Mol Syndromol. 2014;5(2):51–6.

    Article  PubMed  CAS  Google Scholar 

  91. Grace C, Beales P, Summerbell C, Jebb SA, Wright A, Parker D, et al. Energy metabolism in Bardet-Biedl syndrome. Int J Obes Relat Metab Disord. 2003;27(11):1319–24.

    Article  CAS  PubMed  Google Scholar 

  92. Brinckman DD, Keppler-Noreuil KM, Blumhorst C, Biesecker LG, Sapp JC, Johnston JJ, et al. Cognitive, sensory, and psychosocial characteristics in patients with Bardet-Biedl syndrome. Am J Med Genet A. 2013;161A(12):2964–71.

    Article  PubMed  Google Scholar 

  93. Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 2003;425(6958):628–33.

    Article  CAS  PubMed  Google Scholar 

  94. Novas R, Cardenas-Rodriguez M, Irigoin F, Badano JL. Bardet-Biedl syndrome: is it only cilia dysfunction? FEBS Lett. 2015;589(22):3479–91.

    Article  CAS  PubMed  Google Scholar 

  95. Kulaga HM, Leitch CC, Eichers ER, Badano JL, Lesemann A, Hoskins BE, et al. Loss of BBS proteins causes anosmia in humans and defects in olfactory cilia structure and function in the mouse. Nat Genet. 2004;36(9):994–8.

    Article  CAS  PubMed  Google Scholar 

  96. Nishimura DY, Fath M, Mullins RF, Searby C, Andrews M, Davis R, et al. Bbs2-null mice have neurosensory deficits, a defect in social dominance, and retinopathy associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A. 2004;101(47):16588–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim JC, YY O, Badano JL, Esmail MA, Leitch CC, Fiedrich E, et al. MKKS/BBS6, a divergent chaperonin-like protein linked to the obesity disorder Bardet-Biedl syndrome, is a novel centrosomal component required for cytokinesis. J Cell Sci. 2005;118(Pt 5):1007–20.

    Article  CAS  PubMed  Google Scholar 

  98. Blacque OE, Reardon MJ, Li C, McCarthy J, Mahjoub MR, Ansley SJ, et al. Loss of C. elegans BBS-7 and BBS-8 protein function results in cilia defects and compromised intraflagellar transport. Genes Dev. 2004;18(13):1630–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nishimura DY, Swiderski RE, Searby CC, Berg EM, Ferguson AL, Hennekam R, et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am J Hum Genet. 2005;77(6):1021–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Stoetzel C, Muller J, Laurier V, Davis EE, Zaghloul NA, Vicaire S, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am J Hum Genet. 2007;80(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  101. Chiang AP, Beck JS, Yen HJ, Tayeh MK, Scheetz TE, Swiderski RE, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc Natl Acad Sci U S A. 2006;103(16):6287–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stoetzel C, Laurier V, Davis EE, Muller J, Rix S, Badano JL, et al. BBS10 Encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat Genet. 2006;38(5):521–4.

    Article  CAS  PubMed  Google Scholar 

  103. Heon E, Westall C, Carmi R, Elbedour K, Panton C, Mackeen L, et al. Ocular phenotypes of three genetic variants of Bardet-Biedl syndrome. Am J Med Genet A. 2005;132A(3):283–7.

    Article  PubMed  Google Scholar 

  104. Schaefer E, Zaloszyc A, Lauer J, Durand M, Stutzmann F, Perdomo-Trujillo Y, et al. Mutations in SDCCAG8/NPHP10 cause Bardet-Biedl syndrome and are associated with penetrant renal disease and absent Polydactyly. Mol Syndromol. 2011;1(6):273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Imhoff O, Marion V, Stoetzel C, Durand M, Holder M, Sigaudy S, et al. Bardet-Biedl syndrome: a study of the renal and cardiovascular phenotypes in a French cohort. Clin J Am Soc Nephrol. 2011;6(1):22–9.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yoder BK, Tousson A, Millican L, Wu JH, Bugg CE Jr, Schafer JA, et al. Polaris, a protein disrupted in orpk mutant mice, is required for assembly of renal cilium. Am J Physiol Renal Physiol. 2002;282(3):F541–52.

    Article  CAS  PubMed  Google Scholar 

  107. Hildebrandt F, Otto E. Cilia and centrosomes: a unifying pathogenic concept for cystic kidney disease? Nat Rev Genet. 2005;6(12):928–40.

    Article  CAS  PubMed  Google Scholar 

  108. Watnick T, Germino G. From cilia to cyst. Nat Genet. 2003;34(4):355–6.

    Article  CAS  PubMed  Google Scholar 

  109. Pazour GJ, Baker SA, Deane JA, Cole DG, Dickert BL, Rosenbaum JL, et al. The intraflagellar transport protein, IFT88, is essential for vertebrate photoreceptor assembly and maintenance. J Cell Biol. 2002;157(1):103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mockel A, Perdomo Y, Stutzmann F, Letsch J, Marion V, Dollfus H. Retinal dystrophy in Bardet-Biedl syndrome and related syndromic ciliopathies. Prog Retin Eye Res. 2011;30(4):258–74.

    Article  CAS  PubMed  Google Scholar 

  111. Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 2009;119(3):428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lodh S, Hostelley TL, Leitch CC, O'Hare EA, Zaghloul NA. Differential effects on beta-cell mass by disruption of Bardet-Biedl syndrome or Alstrom syndrome genes. Hum Mol Genet. 2016;25(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  113. Seo S, Guo DF, Bugge K, Morgan DA, Rahmouni K, Sheffield VC. Requirement of Bardet-Biedl syndrome proteins for leptin receptor signaling. Hum Mol Genet. 2009;18(7):1323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Berbari NF, Pasek RC, Malarkey EB, Yazdi SM, McNair AD, Lewis WR, et al. Leptin resistance is a secondary consequence of the obesity in ciliopathy mutant mice. Proc Natl Acad Sci U S A. 2013;110(19):7796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fath MA, Mullins RF, Searby C, Nishimura DY, Wei J, Rahmouni K, et al. Mkks-null mice have a phenotype resembling Bardet-Biedl syndrome. Hum Mol Genet. 2005;14(9):1109–18.

    Article  CAS  PubMed  Google Scholar 

  116. Guo D-F, Rahmouni K. Molecular basis of the obesity associated with Bardet–Biedl syndrome. Trends Endocrinol Metab. 2011;22(7):286–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Putoux A, Attie-Bitach T, Martinovic J, Gubler MC. Phenotypic variability of Bardet-Biedl syndrome: focusing on the kidney. Pediatr Nephrol. 2012;27(1):7–15.

    Article  PubMed  Google Scholar 

  118. Beales PL, Reid HA, Griffiths MH, Maher ER, Flinter FA, Woolf AS. Renal cancer and malformations in relatives of patients with Bardet-Biedl syndrome. Nephrol Dial Transplant. 2000;15(12):1977–85.

    Article  CAS  PubMed  Google Scholar 

  119. Simons DL, Boye SL, Hauswirth WW, Wu SM. Gene therapy prevents photoreceptor death and preserves retinal function in a Bardet-Biedl syndrome mouse model. Proc Natl Acad Sci U S A. 2011;108(15):6276–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Seo S, Mullins RF, Dumitrescu AV, Bhattarai S, Gratie D, Wang K, et al. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci. 2013;54(9):6118–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kuhnen P, Clement K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, et al. Proopiomelanocortin deficiency treated with a Melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6.

    Article  PubMed  CAS  Google Scholar 

  122. Alstrom CH, Hallgren B, Nilsson LB, Asander H. Retinal degeneration combined with obesity, diabetes mellitus and neurogenous deafness: a specific syndrome (not hitherto described) distinct from the Laurence-Moon-Bardet-Biedl syndrome: a clinical, endocrinological and genetic examination based on a large pedigree. Acta Psychiatr Neurol Scand Suppl. 1959;129:1–35.

    CAS  PubMed  Google Scholar 

  123. Minton JA, Owen KR, Ricketts CJ, Crabtree N, Shaikh G, Ehtisham S, et al. Syndromic obesity and diabetes: changes in body composition with age and mutation analysis of ALMS1 in 12 United Kingdom kindreds with Alstrom syndrome. J Clin Endocrinol Metab. 2006;91(8):3110–6.

    Article  CAS  PubMed  Google Scholar 

  124. Marshall JD, Beck S, Maffei P, Naggert JK. Alstrom syndrome. Eur J Hum Genet. 2007;15(12):1193–202.

    Article  CAS  PubMed  Google Scholar 

  125. Marshall JD, Ludman MD, Shea SE, Salisbury SR, Willi SM, LaRoche RG, et al. Genealogy, natural history, and phenotype of Alstrom syndrome in a large Acadian kindred and three additional families. Am J Med Genet. 1997;73(2):150–61.

    Article  CAS  PubMed  Google Scholar 

  126. Gathercole LL, Hazlehurst JM, Armstrong MJ, Crowley R, Boocock S, O'Reilly MW, et al. Advanced non-alcoholic fatty liver disease and adipose tissue fibrosis in patients with Alstrom syndrome. Liver Int. 2016;36(11):1704–12.

    Article  CAS  PubMed  Google Scholar 

  127. Citton V, Maffei P, Marshall JD, Baglione A, Collin GB, Milan G, et al. Pituitary morphovolumetric changes in Alstrom syndrome. J Neuroradiol. 2016;43(3):195–9.

    Article  PubMed  Google Scholar 

  128. Hearn T, Renforth GL, Spalluto C, Hanley NA, Piper K, Brickwood S, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat Genet. 2002;31(1):79–83.

    CAS  PubMed  Google Scholar 

  129. Collin GB, Marshall JD, Ikeda A, So WV, Russell-Eggitt I, Maffei P, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat Genet. 2002;31(1):74–8.

    CAS  PubMed  Google Scholar 

  130. Hearn T, Spalluto C, Phillips VJ, Renforth GL, Copin N, Hanley NA, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes. 2005;54(5):1581–7.

    Article  CAS  PubMed  Google Scholar 

  131. Collin GB, Cyr E, Bronson R, Marshall JD, Gifford EJ, Hicks W, et al. Alms1-disrupted mice recapitulate human Alstrom syndrome. Hum Mol Genet. 2005;14(16):2323–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marshall JD, Hinman EG, Collin GB, Beck S, Cerqueira R, Maffei P, et al. Spectrum of ALMS1 variants and evaluation of genotype-phenotype correlations in Alstrom syndrome. Hum Mutat. 2007;28(11):1114–23.

    Article  CAS  PubMed  Google Scholar 

  133. Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, et al. Alstrom syndrome: mutation Spectrum of ALMS1. Hum Mutat. 2015;36(7):660–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Ize-Ludlow D, Gray JA, Sperling MA, Berry-Kravis EM, Milunsky JM, Farooqi IS, et al. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation presenting in childhood. Pediatrics. 2007;120(1):e179–88.

    Article  PubMed  Google Scholar 

  135. Bougneres P, Pantalone L, Linglart A, Rothenbuhler A, Le Stunff C. Endocrine manifestations of the rapid-onset obesity with hypoventilation, hypothalamic, autonomic dysregulation, and neural tumor syndrome in childhood. J Clin Endocrinol Metab. 2008;93(10):3971–80.

    Article  CAS  PubMed  Google Scholar 

  136. Barclay SF, Rand CM, Borch LA, Nguyen L, Gray PA, Gibson WT, et al. Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic Dysregulation (ROHHAD): exome sequencing of trios, monozygotic twins and tumours. Orphanet J Rare Dis. 2015;10:103.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Edmondson AC, Kalish JM. Overgrowth syndromes. J Pediatr Genet. 2015;4(3):136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tatton-Brown K, Cole TRP, Rahman N. Sotos Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews®. Seattle (WA): University of Washington, Seattle.; All rights reserved; 1993.

    Google Scholar 

  139. Tatton-Brown K, Murray A, Hanks S, Douglas J, Armstrong R, Banka S, et al. Weaver syndrome and EZH2 mutations: clarifying the clinical phenotype. Am J Med Genet A. 2013;161a(12):2972–80.

    Article  PubMed  CAS  Google Scholar 

  140. Ounap K. Silver-Russell syndrome and Beckwith-Wiedemann syndrome: opposite phenotypes with heterogeneous molecular etiology. Mol Syndromol. 2016;7(3):110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Mussa A, Di Candia S, Russo S, Catania S, De Pellegrin M, Di Luzio L, et al. Recommendations of the scientific Committee of the Italian Beckwith–Wiedemann Syndrome Association on the diagnosis, management and follow-up of the syndrome. Eur J Med Genet. 2016;59(1):52–64.

    Article  PubMed  Google Scholar 

  142. Kalish JM, Deardorff MA. Tumor screening in Beckwith-Wiedemann syndrome-to screen or not to screen? Am J Med Genet A. 2016;170(9):2261–4.

    Article  PubMed  Google Scholar 

  143. Maas SM, Vansenne F, Kadouch DJ, Ibrahim A, Bliek J, Hopman S, et al. Phenotype, cancer risk, and surveillance in Beckwith-Wiedemann syndrome depending on molecular genetic subgroups. Am J Med Genet A. 2016;170(9):2248–60.

    Article  CAS  PubMed  Google Scholar 

  144. Bonora E. Relationship between regional fat distribution and insulin resistance. Int J Obes Relat Metab Disord. 2000;24(Suppl 2):S32–5.

    Article  CAS  PubMed  Google Scholar 

  145. Izumi K, Housam R, Kapadia C, Stallings VA, Medne L, Shaikh TH, et al. Endocrine phenotype of 6q16.1-q21 deletion involving SIM1 and Prader-Willi syndrome-like features. Am J Med Genet A. 2013;161A(12):3137–43.

    Article  PubMed  CAS  Google Scholar 

  146. Ramachandrappa S, Raimondo A, Cali AM, Keogh JM, Henning E, Saeed S, et al. Rare variants in single-minded 1 (SIM1) are associated with severe obesity. J Clin Invest. 2013;123(7):3042–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bonnefond A, Raimondo A, Stutzmann F, Ghoussaini M, Ramachandrappa S, Bersten DC, et al. Loss-of-function mutations in SIM1 contribute to obesity and Prader-Willi-like features. J Clin Invest. 2013;123(7):3037–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nambu JR, Franks RG, Hu S, Crews ST. The single-minded gene of Drosophila is required for the expression of genes important for the development of CNS midline cells. Cell. 1990;63(1):63–75.

    Article  CAS  PubMed  Google Scholar 

  149. Holder JL Jr, Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum Mol Genet. 2000;9(1):101–8.

    Article  CAS  PubMed  Google Scholar 

  150. Michaud JL, Boucher F, Melnyk A, Gauthier F, Goshu E, Levy E, et al. Sim1 Haploinsufficiency causes hyperphagia, obesity and reduction of the paraventricular nucleus of the hypothalamus. Hum Mol Genet. 2001;10(14):1465–73.

    Article  CAS  PubMed  Google Scholar 

  151. Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev. 1998;12(20):3264–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kublaoui BM, Holder JL Jr, Tolson KP, Gemelli T, Zinn AR. SIM1 Overexpression partially rescues agouti yellow and diet-induced obesity by normalizing food intake. Endocrinology. 2006;147(10):4542–9.

    Article  CAS  PubMed  Google Scholar 

  153. Tolson KP, Gemelli T, Gautron L, Elmquist JK, Zinn AR, Kublaoui BM. Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression. J Neurosci. 2010;30(10):3803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Meyre D, Lecoeur C, Delplanque J, Francke S, Vatin V, Durand E, et al. A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on chromosome 6q22.31-q23.2. Diabetes. 2004;53(3):803–11.

    Article  CAS  PubMed  Google Scholar 

  155. Duggirala R, Blangero J, Almasy L, Arya R, Dyer TD, Williams KL, et al. A major locus for fasting insulin concentrations and insulin resistance on chromosome 6q with strong pleiotropic effects on obesity-related phenotypes in nondiabetic Mexican Americans. Am J Hum Genet. 2001;68(5):1149–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hung CC, Luan J, Sims M, Keogh JM, Hall C, Wareham NJ, et al. Studies of the SIM1 gene in relation to human obesity and obesity-related traits. Int J Obes. 2007;31(3):429–34.

    Article  CAS  Google Scholar 

  157. Gray J, Yeo GS, Cox JJ, Morton J, Adlam AL, Keogh JM, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes. 2006;55(12):3366–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yeo GS, Connie Hung CC, Rochford J, Keogh J, Gray J, Sivaramakrishnan S, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat Neurosci. 2004;7(11):1187–9.

    Article  CAS  PubMed  Google Scholar 

  159. Han JC, Liu QR, Jones M, Levinn RL, Menzie CM, Jefferson-George KS, et al. Brain-derived neurotrophic factor and obesity in the WAGR syndrome. N Engl J Med. 2008;359(9):918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Skledar M, Nikolac M, Dodig-Curkovic K, Curkovic M, Borovecki F, Pivac N. Association between brain-derived neurotrophic factor Val66Met and obesity in children and adolescents. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;36(1):136–40.

    Article  CAS  Google Scholar 

  161. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  163. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S. Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol. 2004;25(2):77–107.

    Article  CAS  PubMed  Google Scholar 

  164. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, et al. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci. 2003;6(7):736–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M. Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci. 2007;27(52):14265–74.

    Article  CAS  PubMed  Google Scholar 

  166. Nakagawa T, Tsuchida A, Itakura Y, Nonomura T, Ono M, Hirota F, et al. Brain-derived neurotrophic factor regulates glucose metabolism by modulating energy balance in diabetic mice. Diabetes. 2000;49(3):436–44.

    Article  CAS  PubMed  Google Scholar 

  167. Tonra JR, Ono M, Liu X, Garcia K, Jackson C, Yancopoulos GD, et al. Brain-derived neurotrophic factor improves blood glucose control and alleviates fasting hyperglycemia in C57BLKS-Lepr(db)/lepr(db) mice. Diabetes. 1999;48(3):588–94.

    Article  CAS  PubMed  Google Scholar 

  168. Wang C, Godar RJ, Billington CJ, Kotz CM. Chronic administration of brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus reverses obesity induced by high-fat diet. Am J Physiol Regul Integr Comp Physiol. 2010;298(5):R1320–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Kernie SG, Liebl DJ, Parada LF. BDNF regulates eating behavior and locomotor activity in mice. EMBO J. 2000;19(6):1290–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Rios M, Fan G, Fekete C, Kelly J, Bates B, Kuehn R, et al. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol Endocrinol. 2001;15(10):1748–57.

    Article  CAS  PubMed  Google Scholar 

  171. Komori T, Morikawa Y, Nanjo K, Senba E. Induction of brain-derived neurotrophic factor by leptin in the ventromedial hypothalamus. Neuroscience. 2006;139(3):1107–15.

    Article  CAS  PubMed  Google Scholar 

  172. Liao GY, An JJ, Gharami K, Waterhouse EG, Vanevski F, Jones KR, et al. Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nat Med. 2012;18(4):564–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Pelleymounter MA, Cullen MJ, Wellman CL. Characteristics of BDNF-induced weight loss. Exp Neurol. 1995;131(2):229–38.

    Article  CAS  PubMed  Google Scholar 

  174. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14(3):324–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mattson MP. Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metab. 2012;16(6):706–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Martin B, Golden E, Carlson OD, Pistell P, Zhou J, Kim W, et al. Exendin-4 improves glycemic control, ameliorates brain and pancreatic pathologies, and extends survival in a mouse model of Huntington's disease. Diabetes. 2009;58(2):318–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research [grant numbers 115707 and 119504] and the Stollery Children’s Hospital Foundation through the Women and Children’s Health Research Institute to AMH.

Editor’s Question

What criteria should the clinician use to distinguish children with early-onset obesity from those who they suspect may be overfed by parents or caretakers?

Authors’ Response

We suggest the following criteria to distinguish pathologic early-onset obesity from exogenous obesity:

  1. i.

    Early-onset obesity occurring prior to age 5 years.

  2. ii.

    Rapid rate of weight gain that is not attenuated by nutritional or exercise intervention.

  3. iii.

    Hyperphagia with absent satiety signals manifest as abnormal food-seeking behavior (hiding or stealing food, eating nonfood substances, eating in excess despite abdominal pain and/or vomiting).

  4. iv.

    Associated neuroendocrine abnormalities (i.e., pituitary hormone abnormalities).

  5. v.

    Associated features suggesting syndromic or monogenic obesity disorders, as described in our chapter and in Chap. 9 by Marie Pigeyre and David Meyre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea M. Haqq MD, MHS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Irizarry, K.A., Haqq, A.M. (2018). Syndromic Obesity. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics