Advertisement

The Gut Microbiome and Control of Weight Gain

  • Anita L. Kozyrskyj
  • Hein Min Tun
  • Sarah L. Bridgman
Chapter
Part of the Contemporary Endocrinology book series (COE)

Abstract

Evidence from prospective studies testing the association between infant gut microbial composition and later childhood overweight is beginning to accumulate. Studies point to a critical role for Bacteroides spp. in weight control in early life. Gut lactobacilli, bifidobacteria, staphylococci, streptococci, enterobacteria, and Akkermansia may also be important for regulating growth in infants and young children. The effectiveness of breastfeeding as a dietary intervention depends on the stage of gut microbiota development and health status of the mother. Women with prepregnancy overweight have altered breast milk composition, and their infants show early, transient, and later changes to gut microbial community structure. Breast milk itself may interact with the host system of the infant to modify the effectiveness of administered probiotics. With the detection of microbes in the placenta and amniotic fluid, gut microbial development has been extended to the time of pregnancy and subject to influences, such as maternal overweight.

Keywords

Gut Microbiota Metabolites Infants Breastfeeding Obesity Children 

References

  1. 1.
    de Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92(5):1257–64.CrossRefPubMedGoogle Scholar
  2. 2.
    Biro FM, Wien M. Childhood obesity and adult morbidities. Am J Clin Nutr. 2010;91(5):1499S–505S.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31.CrossRefPubMedGoogle Scholar
  5. 5.
    Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457(7228):480–4.CrossRefPubMedGoogle Scholar
  6. 6.
    Azad MB, Konya T, Maughan H, Guttman DS, Field CJ, Chari RS, et al. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. CMAJ. 2013;185(5):385–94.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, et al. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118(2):511–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How informative is the mouse for human gut microbiota research? Dis Model Mech. 2014;8:1–16.CrossRefGoogle Scholar
  9. 9.
    Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol. 2008;74(16):4985–96.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tyler AD, Smith MI, Silverberg MS. Analyzing the human microbiome: a “how to” guide for physicians. Am J Gastroenterol. 2014;109(7):983–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Turnbaugh PJ, Backhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe. 2008;3(4):213–23.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010;104(6):919–29.CrossRefPubMedGoogle Scholar
  14. 14.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1(6):6ra14.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022–3.CrossRefPubMedGoogle Scholar
  16. 16.
    Angelakis E, Armougom F, Million M, Raoult D. The relationship between gut microbiota and weight gain in humans. Future Microbiol. 2012;7(1):91–109.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, et al. Human gut microbiota in obesity and after gastric bypass. Obesity (Silver Spring). 2010;18(1):190–5.CrossRefGoogle Scholar
  18. 18.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.CrossRefGoogle Scholar
  19. 19.
    Duncan SH, Lobley GE, Holtrop G, Ince J, Johnstone AM, Louis P, et al. Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes. 2008;32(11):1720–4.CrossRefGoogle Scholar
  20. 20.
    Guarner F, Malagelada JR. Gut flora in health and disease. Lancet. 2003;361(9356):512–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Rissanen A, Hakala P, Lissner L, Mattlar CE, Koskenvuo M, Ronnemaa T. Acquired preference especially for dietary fat and obesity: a study of weight-discordant monozygotic twin pairs. Int J Obes Relat Metab Disord. 2002;26(7):973–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Waldram A, Holmes E, Wang Y, Rantalainen M, Wilson ID, Tuohy KM, et al. Top-down systems biology modeling of host metabotype-microbiome associations in obese rodents. J Proteome Res. 2009;8(5):2361–75.CrossRefPubMedGoogle Scholar
  23. 23.
    Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.CrossRefPubMedGoogle Scholar
  24. 24.
    Million M, Angelakis E, Maraninchi M, Henry M, Giorgi R, Valero R, et al. Correlation between body mass index and gut concentrations of lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia Coli. Int J Obes. 2013;37(11):1460–6.CrossRefGoogle Scholar
  25. 25.
    Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Forum Nutr. 2015;7(4):2237–60.Google Scholar
  26. 26.
    Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol. 2016;24(7):523–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol. 2014;90(3):883–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Davis MY, Zhang H, Brannan LE, Carman RJ, Boone JH. Rapid change of fecal microbiome and disappearance of Clostridium Difficile in a colonized infant after transition from breast milk to cow milk. Microbiome. 2016;4(1):53.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Karlsson CL, Onnerfalt J, Xu J, Molin G, Ahrne S, Thorngren-Jerneck K. The microbiota of the gut in preschool children with normal and excessive body weight. Obesity (Silver Spring). 2012;20(11):2257–61.CrossRefGoogle Scholar
  30. 30.
    Santacruz A, Collado MC, Garcia-Valdes L, Segura MT, Martin-Lagos JA, Anjos T, et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br J Nutr. 2010;104(1):83–92.CrossRefPubMedGoogle Scholar
  31. 31.
    Goffredo M, Mass K, Parks EJ, Wagner DA, McClure EA, Graf J, et al. Role of gut microbiota and short chain fatty acids in modulating energy harvest and fat partitioning in youth. J Clin Endocrinol Metab. 2016;101(11):4367–76.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes. 2014;38(12):1525–31.CrossRefGoogle Scholar
  33. 33.
    Jumpertz R, Le DS, Turnbaugh PJ, Trinidad C, Bogardus C, Gordon JI, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr. 2011;94(1):58–65.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha. Br J Nutr. 2010;103(3):460–6.CrossRefPubMedGoogle Scholar
  35. 35.
    Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Culture gut microbiota from twins discordant for obesity modulate adiposity and metabolic phenotypes in mice. Science. 2013;341(6150):1–22.CrossRefGoogle Scholar
  37. 37.
    Payne AN, Chassard C, Zimmermann M, Muler P, Stinca S, Lacroix C. The metabolic activity of gut microbiota of obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes. 2011;e12:1–8.Google Scholar
  38. 38.
    Perry RJ, Peng L, Barry NA, Cline GW, Zhang D, Cardone RL, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cherbut C, Ferrier L, Roze C, Anini Y, Blottiere H, Lecannu G, et al. Short-chain fatty acids modify colonic motility through nerves and polypeptide YY release in the rat. Am J Phys. 1998;275(6 Pt 1):G1415–22.Google Scholar
  40. 40.
    van der Beek CM, Canfora EE, Lenaerts K, Troost FJ, Damink SW, Holst JJ, et al. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin Sci (Lond). 2016;130(22):2073–82.CrossRefGoogle Scholar
  41. 41.
    De SA, Bloom SR. Gut hormones and appetite control: a focus on PYY and GLP-1 as therapeutic targets in obesity. Gut Liver. 2012;6(1):10–20.CrossRefGoogle Scholar
  42. 42.
    Cuche G, Cuber JC, Malbert CH. Ileal short-chain fatty acids inhibit gastric motility by a humoral pathway. Am J Physiol Gastrointest Liver Physiol. 2000;279(5):G925–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Rahat-Rozenbloom S, Fernandes J, Cheng J, Wolever TM. Acute increases in serum colonic short-chain fatty acids elicited by inulin do not increase GLP-1 or PYY responses but may reduce ghrelin in lean and overweight humans. Eur J Clin Nutr. 2017;71(8):953–8.CrossRefPubMedGoogle Scholar
  44. 44.
    Gerard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73(1):147–62.CrossRefPubMedGoogle Scholar
  45. 45.
    Kumari M, Kozyrskyj AL. Gut microbial metabolism defines host metabolism: an emerging perspective in obesity and allergic inflammation. Obes Rev. 2017;18(1):18–31.CrossRefPubMedGoogle Scholar
  46. 46.
    Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493–501.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bervoets L, Van HK, Kortleven I, Van NC, Hens N, Vael C, et al. Differences in gut microbiota composition between obese and lean children: a cross-sectional study. Gut Pathog. 2013;5(1):10.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Xu P, Li M, Zhang J, Zhang T. Correlation of intestinal microbiota with overweight and obesity in Kazakh school children. BMC Microbiol. 2012;12:283.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Koleva PT, Kim JS, Scott JA, Kozyrskyj AL. Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today. 2015;105(4):265–77.CrossRefPubMedGoogle Scholar
  50. 50.
    Dogra S, Sakwinska O, Soh SE, Ngom-Bru C, Bruck WM, Berger B, et al. Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 2015;6(1):e02419–4.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Torrazza MR, Neu J. The developing intestinal microbiome and its relationship to health and disease in the neonate. J Perinatol. 2011;31(Suppl 1):S29–34.CrossRefGoogle Scholar
  52. 52.
    Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes. 2011;35(4):522–9.CrossRefGoogle Scholar
  53. 53.
    Trasande L, Blustein J, Liu M, Corwin E, Cox LM, Blaser MJ. Infant antibiotic exposures and early-life body mass. Int J Obes. 2013;37(1):16–23.CrossRefGoogle Scholar
  54. 54.
    Azad MB, Bridgman SL, Becker AB, Kozyrskyj AL. Infant antibiotic exposure and the development of childhood overweight and central adiposity. Int J Obes. 2014;38(10):1290–8.CrossRefGoogle Scholar
  55. 55.
    Murphy R, Stewart AW, Braithwaite I, Beasley R, Hancox RJ, Mitchell EA. Antibiotic treatment during infancy and increased body mass index in boys: an international cross-sectional study. Int J Obes. 2014;38(8):1115–9.CrossRefGoogle Scholar
  56. 56.
    Scheepers LE, Penders J, Mbakwa CA, Thijs C, Mommers M, Arts IC. The intestinal microbiota composition and weight development in children: the KOALA birth cohort study. Int J Obes. 2015;39(1):16–25.CrossRefGoogle Scholar
  57. 57.
    White RA, Bjornholt JV, Baird DD, Midtvedt T, Harris JR, Pagano M, et al. Novel developmental analyses identify longitudinal patterns of early gut microbiota that affect infant growth. PLoS Comput Biol. 2013;9(5):e1003042.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Luoto R, Kalliomaki M, Laitinen K, Delzenne NM, Cani PD, Salminen S, et al. Initial dietary and microbiological environments deviate in normal-weight compared to overweight children at 10 years of age. J Pediatr Gastroenterol Nutr. 2011;52(1):90–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Vael C, Verhulst SL, Nelen V, Goossens H, Desager KN. Intestinal microflora and body mass index during the first three years of life: an observational study. Gut Pathog. 2011;3(1):8.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kalliomaki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87(3):534–8.PubMedGoogle Scholar
  61. 61.
    Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet. 2001;357(9262):1076–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial Community of Human gut Microbiota Reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4(9):1–8.CrossRefGoogle Scholar
  63. 63.
    Gupta S, Allen-Vercoe E, Petrof EO. Fecal microbiota transplantation: in perspective. Therap Adv Gastroenterol. 2016;9(2):229–39.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Horta BL, Bahl R, Martinés JC, Victoria CG. Evidence on the long-term effects of breastfeeding: systematic review and meta-analyses. Geneva: World Health Organization; 2007. p. 1–57.Google Scholar
  65. 65.
    Field CJ. The immunological components of human milk and their effect on immune development in infants. J Nutr. 2005;135(1):1–4.PubMedGoogle Scholar
  66. 66.
    Jeurink PV, van BJ, Jimenez E, Knippels LM, Fernandez L, Garssen J, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4(1):17–30.CrossRefPubMedGoogle Scholar
  67. 67.
    Coppa GV, Gabrielli O, Pierani P, Catassi C, Carlucci A, Giorgi PL. Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics. 1993;91(3):637–41.PubMedGoogle Scholar
  68. 68.
    Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology. 2012;22(9):1147–62.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40.CrossRefGoogle Scholar
  70. 70.
    McGuire MK, McGuire MA. Human milk: mother Nature's prototypical probiotic food? Adv Nutr. 2015;6(1):112–23.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Arroyo R, Martin V, Maldonado A, Jimenez E, Fernandez L, Rodriguez JM. Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin Infect Dis. 2010;50(12):1551–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Jimenez E, Fernandez L, Maldonado A, Martin R, Olivares M, Xaus J, et al. Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol. 2008;74(15):4650–5.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Azad MB, Konya T, Persaud RR, Guttman DS, Chari RS, Field CJ, et al. Impact of maternal intrapartum antibiotics, method of birth and breastfeeding on gut microbiota during the first year of life: a prospective cohort study. BJOG. 2016;123(6):983–93.CrossRefPubMedGoogle Scholar
  74. 74.
    Bridgman SL, Konya T, Azad MB, Sears MR, Becker AB, Turvey SE, et al. Infant gut immunity: a preliminary study of IgA associations with breastfeeding. J Dev Orig Health Dis. 2016;7(1):68–72.CrossRefPubMedGoogle Scholar
  75. 75.
    Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17(5):690–703.CrossRefPubMedGoogle Scholar
  76. 76.
    Vail B, Prentice P, Dunger DB, Hughes IA, Acerini CL, Ong KK. Age at weaning and infant growth: primary analysis and systematic review. J Pediatr. 2015;167(2):317–24.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60(1):49–74.CrossRefGoogle Scholar
  78. 78.
    Woo Baidal JA, Locks LM, Cheng ER, Blake-Lamb TL, Perkins ME, Taveras EM. Risk factors for childhood obesity in the first 1,000 days: a systematic review. Am J Prev Med. 2016;50(6):761–79.CrossRefPubMedGoogle Scholar
  79. 79.
    Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–51.CrossRefPubMedGoogle Scholar
  80. 80.
    Collado MC, Isolauri E, Laitinen K, Salminen S. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr. 2010;92(5):1023–30.CrossRefPubMedGoogle Scholar
  81. 81.
    Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado MC. Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis. 2016;7(1):54–60.CrossRefPubMedGoogle Scholar
  82. 82.
    Million M, Angelakis E, Paul M, Armougom F, Leibovici L, et al. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012;53(2):100–8.CrossRefPubMedGoogle Scholar
  83. 83.
    Abrahamsson TR, Sinkiewicz G, Jakobsson T, Fredrikson M, Bjorksten B. Probiotic lactobacilli in breast milk and infant stool in relation to oral intake during the first year of life. J Pediatr Gastroenterol Nutr. 2009;49(3):349–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anita L. Kozyrskyj
    • 1
  • Hein Min Tun
    • 1
  • Sarah L. Bridgman
    • 1
  1. 1.Department of PediatricsEdmonton Clinical Health Academy, University of AlbertaEdmontonCanada

Personalised recommendations