Skip to main content

Energy Expenditure in Children: The Role of NEAT (Non-exercise Activity Thermogenesis)

  • Chapter
  • First Online:
  • 2759 Accesses

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

By the law of conservation of energy, body fat increases when energy intake is consistently greater than energy expenditure. Excess body fat and obesity are the result of sustained positive energy balance. The pandemic of obesity has spread from the United States to Europe and is now emerging in middle- and even low-income countries. In the United States, for example, since the 1970s the weight of the average person has increased by ~12 kg; importantly this trend affects all ages, races, and socio-economic groups.

This is a preview of subscription content, log in via an institution.

References

  1. Levine JA. Nonexercise activity thermogenesis–liberating the life-force. J Intern Med. 2007;262:273–87.

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization; 1997.

    Google Scholar 

  3. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. Years of life lost due to obesity. J Am Med Assoc. 2003;289:187–93.

    Article  Google Scholar 

  4. http://www.cdc.gov/nchs/data/ad/ad347.pdf.

  5. Finkelstein E, Fiebelkorn C, Wang G. The costs of obesity among full-time employees. Am J Health Promot. 2005;20:45–51.

    Article  PubMed  Google Scholar 

  6. Seidell JC. Prevention of obesity: the role of the food industry. Nutr Metab Cardiovasc Dis. 1999;9:45–50.

    CAS  PubMed  Google Scholar 

  7. Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth? BMJ. 1995;311:437–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kant AK, Graubard BI. Secular trends in patterns of self-reported food consumption of adult Americans: NHANES 1971–1975 to NHANES 1999–2002. Am J Clin Nutr. 2006;84:1215–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. http://archive.nlm.nih.gov/proj/dxpnet/nhanes/docs/nhanesDocs.php.

  10. Lanningham-Foster L, Nysse LJ, Levine JA. Labor saved, calories lost: the energetic impact of domestic labor-saving devices. Obes Res. 2003;11:1178–81.

    Article  PubMed  Google Scholar 

  11. Daan S, Masman D, Strijkstra A, Verhulst S. Intraspecific allometry of basal metabolic rate: relations with body size, temperature, composition, and circadian phase in the kestrel, Falco tinnunculus. J Biol Rhythm. 1989;4:267–83.

    CAS  Google Scholar 

  12. Ford LE. Some consequences of body size. Am J Phys. 1984;247:H495–507.

    Article  CAS  Google Scholar 

  13. Donahoo WT, Levine JA, Melanson EL. Variability in energy expenditure and its components. Curr Opin Clin Nutr Metab Care. 2004;7:599–605.

    Article  PubMed  Google Scholar 

  14. Hill JO, DiGirolamo M, Heymsfield SB. Thermic effect of food after ingested versus tube-delivered meals. Am J Phys. 1985;248:E370–4.

    CAS  Google Scholar 

  15. Bitar A, Vermorel M, Fellmann N, Coudert J. Twenty-four-hour energy expenditure and its components in prepubertal children as determined by whole-body indirect calorimetry and compared with young adults. Am J Clin Nutr. 1995;62:308–15.

    Article  CAS  PubMed  Google Scholar 

  16. Bitar A, Vernet J, Coudert J, Vermorel M. Longitudinal changes in body composition, physical capacities and energy expenditure in boys and girls during the onset of puberty. Eur J Nutr. 2000;39:157–63.

    Article  CAS  PubMed  Google Scholar 

  17. Molnar D, Schutz Y. The effect of obesity, age, puberty and gender on resting metabolic rate in children and adolescents. Eur J Pediatr. 1997;156:376–81.

    Article  CAS  PubMed  Google Scholar 

  18. Levine JA. Non-exercise activity thermogenesis (NEAT). Nutr Rev. 2004;62:S82–97.

    Article  PubMed  Google Scholar 

  19. Levine JA. Measurement of energy expenditure. Public Health Nutr. 2005;8:1123–32.

    Article  PubMed  Google Scholar 

  20. Merriam-Webster Collegiate Dictionary. 11th ed. Springfield: Merriam-Webster Inc.; 2003.

    Google Scholar 

  21. Coward WA. Stable isotopic methods for measuring energy expenditure. The doubly-labelled-water (2H2(18)O) method: principles and practice. Proc Nutr Soc. 1988;47:209–18.

    Article  CAS  PubMed  Google Scholar 

  22. Coward WA, Roberts SB, Cole TJ. Theoretical and practical considerations in the doubly-labelled water (2H2(18)O) method for the measurement of carbon dioxide production rate in man. Eur J Clin Nutr. 1988;42:207–12.

    CAS  PubMed  Google Scholar 

  23. Hoos MB, Plasqui G, Gerver WJ, Westerterp KR. Physical activity level measured by doubly labeled water and accelerometry in children. Eur J Appl Physiol. 2003;89:624–6.

    Article  PubMed  Google Scholar 

  24. Lanningham-Foster LM, Jensen TB, McCrady SK, Nysse LJ, Foster RC, Levine JA. Laboratory measurement of posture allocation and physical activity in children. Med Sci Sports Exerc. 2005;37:1800–5.

    Article  PubMed  Google Scholar 

  25. Black AE, Coward WA, Cole TJ, Prentice AM. Human energy expenditure in affluent societies: an analysis of 574 doubly-labelled water measurements. Eur J Clin Nutr. 1996;50:72–92.

    CAS  PubMed  Google Scholar 

  26. Coward WA. Contributions of the doubly labeled water method to studies of energy balance in the Third World. Am J Clin Nutr. 1998;68:962S–9S.

    Article  CAS  PubMed  Google Scholar 

  27. Levine JA, Weisell R, Chevassus S, Martinez CD, Burlingame B, Coward WA. The work burden of women. Science. 2001;294:812.

    Article  CAS  PubMed  Google Scholar 

  28. Levine J, Heet J, Burlingame B. Aging on the job. Sci Aging Knowl Environ. 2006;2006:pe16.

    Article  Google Scholar 

  29. Westerterp KR. Daily physical activity and ageing. Curr Opin Clin Nutr Metab Care. 2000;3:485–8.

    Article  CAS  PubMed  Google Scholar 

  30. Prentice AM, Leavesley K, Murgatroyd PR, et al. Is severe wasting in elderly mental patients caused by an excessive energy requirement? Age Ageing. 1989;18:158–67.

    Article  CAS  PubMed  Google Scholar 

  31. Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72:1451–4.

    CAS  PubMed  Google Scholar 

  32. Bouchard C, Tremblay A, Despres JP, et al. The response to long-term overfeeding in identical twins. N Engl J Med. 1990;322:1477–82.

    Article  CAS  PubMed  Google Scholar 

  33. Klein S, Goran M. Energy metabolism in response to overfeeding in young adult men. Metabolism. 1993;42:1201–5.

    Article  CAS  PubMed  Google Scholar 

  34. Diaz EO, Prentice AM, Goldberg GR, Murgatroyd PR, Coward WA. Metabolic response to experimental overfeeding in lean and overweight healthy volunteers. Am J Clin Nutr. 1992;56:641–55.

    CAS  PubMed  Google Scholar 

  35. Levine JA, Eberhardt NL, Jensen MD. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283:212–4.

    Article  CAS  PubMed  Google Scholar 

  36. Levine JA, Lanningham-Foster LM, McCrady SK, et al. Interindividual variation in posture allocation: possible role in human obesity. Science. 2005;307:584–6.

    Article  CAS  PubMed  Google Scholar 

  37. Tryon WW, Goldberg JL, Morrison DF. Activity decreases as percentage overweight increases. Int J Obes Relat Metab Disord. 1992;16:591–5.

    CAS  PubMed  Google Scholar 

  38. Marsh HW, Hau KT, Sung RY, Yu CW. Childhood obesity, gender, actual-ideal body image discrepancies, and physical self-concept in Hong Kong children: cultural differences in the value of moderation. Dev Psychol. 2007;43:647–62.

    Article  PubMed  Google Scholar 

  39. Ogden CL, Fryar CD, Carroll MD, Flegal KM. Mean body weight, height, and body mass index, United States 1960–2002. Advance data from vital and health statistics. Vol 347. Hyattsville: National Center for Health Statistics; 2004.

    Google Scholar 

  40. Hedley AA, Ogden CL, Johnson CL, Carroll MD, Curtin LR, Flegal KM. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999–2002. J Am Med Assoc. 2004;291:2847–50.

    Article  CAS  Google Scholar 

  41. Freedman DS, Ogden CL, Berenson GS, Horlick M. Body mass index and body fatness in childhood. Curr Opin Clin Nutr Metab Care. 2005;8:618–23.

    Article  PubMed  Google Scholar 

  42. James WP. The epidemiology of obesity. Ciba Found Symp. 1996;201:1–11. discussion 11–16, 32–36

    CAS  PubMed  Google Scholar 

  43. James PT, Leach R, Kalamara E, Shayeghi M. The worldwide obesity epidemic. Obes Res. 2001;9(Suppl 4):228S–33S.

    Article  PubMed  Google Scholar 

  44. Dietz WH, Gortmaker SL. Preventing obesity in children and adolescents. Annu Rev Public Health. 2001;22:337–53.

    Article  CAS  PubMed  Google Scholar 

  45. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dietz W. Physical activity and childhood obesity. Nutrition. 1991;7:295–6.

    CAS  PubMed  Google Scholar 

  47. Must A, Bandini LG, Tybor DJ, Phillips SM, Naumova EN, Dietz WH. Activity, inactivity, and screen time in relation to weight and fatness over adolescence in girls. Obesity (Silver Spring). 2007;15:1774–81.

    Article  Google Scholar 

  48. Vandewater EA, Bickham DS, Lee JH. Time well spent? Relating television use to children’s free-time activities. Pediatrics. 2006;117:e181–91.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Nielsen ACC. Nielsen report on television. Northbrook, IL: AC Nielsen Co., Media Research Division; 1998.

    Google Scholar 

  50. Faith MS, Berman N, Heo M, et al. Effects of contingent television on physical activity and television viewing in obese children. Pediatrics. 2001;107:1043–8.

    Article  CAS  PubMed  Google Scholar 

  51. Motmans RR, Tomlow S, Vissers D. Trunk muscle activity in different modes of carrying schoolbags. Ergonomics. 2006;49:127–38.

    Article  CAS  PubMed  Google Scholar 

  52. Schaber PL. Incorporating problem-based learning and video technology in teaching group process in an occupational therapy curriculum. J Allied Health. 2005;34:110–6.

    PubMed  Google Scholar 

  53. Lubans DR, Morgan PJ, Dewar D, et al. The Nutrition and Enjoyable Activity for Teen Girls (NEAT girls) randomized controlled trial for adolescent girls from disadvantaged secondary schools: rationale, study protocol, and baseline results. BMC Public Health. 2010;10:652.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matthews-Ewald MR, Kelley GA, Moore LC, Gurka MJ. How active are rural children and adolescents during PE class? An examination of light physical activity. W V Med J. 2014;110(2):28–31.

    PubMed  PubMed Central  Google Scholar 

  55. McManus AM. Physical activity - a neat solution to an impending crisis. J Sports Sci Med. 2007;6(3):368–73.

    PubMed  PubMed Central  Google Scholar 

  56. Schaefer SE, Camacho-Gomez R, Sadeghi B, Kaiser L, German JB, de la Torre A. Assessing child obesity and physical activity in a hard-to-reach population in California’s Central Valley, 2012–2013. Prev Chronic Dis. 2015;12:E117.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Schaefer SE, Van Loan M, German JB. A feasibility study of wearable activity monitors for pre-adolescent school-age children. Prev Chronic Dis. 2014;11:E85.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tovar A, Mena NZ, Risica P, Gorham G, Gans KM. Nutrition and physical activity environments of home-based child care: what Hispanic providers have to say. Child obes. 2015;11(5):521–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sanders T, Feng X, Fahey PP, Lonsdale C, Astell-Burt T. The influence of neighbourhood green space on children’s physical activity and screen time: findings from the longitudinal study of Australian children. Int J Behav Nutr Phys Act. 2015;12:126.

    Article  PubMed  PubMed Central  Google Scholar 

  60. US Department of Health and Human Services CfDaP, National Center for Chronic Disease Prevention and Health Promotion. Physical activity and health: a report of the surgeon general. Atlanta: US Department of Health and Human Services CfDaP, National Center for Chronic Disease Prevention and Health Promotion; 1996.

    Google Scholar 

  61. Blair SN, Brodney S. Effects of physical inactivity and obesity on morbidity and mortality: current evidence and research issues. Med Sci Sports Exerc. 1999;31:S646–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sources of support: Supported by grants DK56650, DK63226, DK66270, DK50456 (Minnesota Obesity Center), HD52001, and RR-0585 from the US Public Health Service and by the Mayo Foundation and by a grant to the Mayo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Levine MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Lanningham-Foster, L., Levine, J.A. (2018). Energy Expenditure in Children: The Role of NEAT (Non-exercise Activity Thermogenesis). In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_18

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics