Skip to main content

Polygenic Obesity

  • Chapter
  • First Online:
Pediatric Obesity

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

A small number of single gene mutations causing human obesity have been identified by molecular genetic analyses; the responsible mutations are rare. The genetic mechanisms involved in the predisposition to obesity in most affected people are polygenic (Locke et al., Nature 518:197–206, 2015). Currently, more than 100 such “polygenes” or “polygenic loci” harboring genetic variants associated with BMI have been identified (Yazdi et al., PeerJ 3:e856, 2015). Each single polygene makes only a small contribution, in the magnitude of a few hundred grams or less, to the development of obesity. A number of such predisposing gene variants (alleles) are found in obese subjects; however, the same alleles, although at a lower frequency, are also found in normal-weight and even lean individuals (Hebebrand et al., Dtsch Arztebl Int. 110:338–44, 2013). Evidently, these alleles can only be identified and validated as obesity-risk alleles by statistical analyses (Locke et al., Nature 518:197–206, 2015). Currently, combined genome-wide association studies (GWAS) on more than 300,000 population-based individuals have been conducted, and meta-analyses of additional GWAS (GWAMA) are under way, which will be based on over 1,000,000 mainly epidemiologically ascertained subjects. Recently, cross-disorder and cross-phenotype analyses have led to the identification of genes that had not been detected by analyses of single disorders/phenotypes alone (Hinney et al., Mol Psychiatry 22:192–201, 2017; Bulik-Sullivan et al., Nat Genet 47:1236–41, 2015). Functional in vitro and in vivo studies of the GWAS-derived polygenes are assumed to lead to a better understanding of the molecular genetic mechanisms involved in body weight regulation. It is a matter of debate if epigenetic markers can be transmitted across generations and can thus explain part of the heritability. Initial genome-wide methylation pattern analyses (Dick et al., Lancet. 383:1990–82014, 2014) and studies on “metastable epialleles” (Kühnen et al., Cell Metab. 24:502-9, 2016) pave the way to a better understanding of epigenetic mechanisms in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518(7538):197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jarick I, Vogel CI, Scherag S, Schäfer H, Hebebrand J, Hinney A, et al. Novel common copy number variation for early onset extreme obesity on chromosome 11q11 identified by a genome-wide analysis. Hum Mol Genet. 2011;20(4):840–52.

    Article  CAS  PubMed  Google Scholar 

  3. Yazdi FT, Clee SM, Meyre D. Obesity genetics in mouse and human: back and forth, and back again. PeerJ. 2015;3:e856.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Walley AJ, Asher JE, Froguel P. The genetic contribution to non-syndromic human obesity. Nat Rev Genet. 2009;10(7):431–42.

    Article  CAS  PubMed  Google Scholar 

  5. Hebebrand J, Hinney A, Knoll N, Volckmar AL, Scherag A. Molecular genetic aspects of weight regulation. Dtsch Arztebl Int. 2013;110(19):338–44.

    PubMed  PubMed Central  Google Scholar 

  6. Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genet Epidemiol. 2008;32(3):227–34.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, Voight BF, et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat Genet. 2012;44(5):483–9.

    Article  CAS  PubMed  Google Scholar 

  8. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007;316(5826):889–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geller F, Reichwald K, Dempfle A, Illig T, Vollmert C, Herpertz S, et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity. Am J Hum Genet. 2004;74(3):572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hinney A, Volckmar AL, Knoll N. Melanocortin-4 receptor in energy homeostasis and obesity pathogenesis. Prog Mol Biol Transl Sci. 2013;114:147–91.

    Article  CAS  PubMed  Google Scholar 

  11. Heid IM, Vollmert C, Hinney A, Doring A, Geller F, Lowel H, et al. Association of the 103I MC4R allele with decreased body mass in 7937 participants of two population based surveys. J Med Genet. 2005;42(4):e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Young EH, Wareham NJ, Farooqi S, Hinney A, Hebebrand J, Scherag A, et al. The V103I polymorphism of the MC4R gene and obesity: population based studies and meta-analysis of 29 563 individuals. Int J Obes. 2007;31(9):1437–41.

    Article  CAS  Google Scholar 

  13. Xiang Z, Litherland SA, Sorensen NB, Proneth B, Wood MS, Shaw AM, et al. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry. 2006;45(23):7277–88.

    Article  CAS  PubMed  Google Scholar 

  14. Stutzmann F, Vatin V, Cauchi S, Morandi A, Jouret B, Landt O, et al. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum Mol Genet. 2007;16(15):1837–44.

    Article  CAS  PubMed  Google Scholar 

  15. Loos RJ, Lindgren CM, Li S, Wheeler E, Zhao JH, Prokopenko I, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40(6):768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal eighteen new loci associated with body mass index. Nat Genet. 2010;42(11):937–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  18. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  19. Meyre D, Delplanque J, Chèvre JC, Lecoeur C, Lobbens S, Gallina S, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations. Nat Genet. 2009;41(2):157–9.

    Article  CAS  PubMed  Google Scholar 

  20. Berndt SI, Gustafsson S, Mägi R, Ganna A, Wheeler E, Feitosa MF, et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat Genet. 2013;45(5):501–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hinney A, Nguyen TT, Scherag A, Friedel S, Brönner G, Müller TD, et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS One. 2007;2(12):e1361.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scherag A, Dina C, Hinney A, Vatin V, Scherag S, Vogel CI, et al. Two new loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups. PLoS Genet. 2010;6(4):e1000916.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bradfield JP, Taal HR, Timpson NJ, Scherag A, Lecoeur C, Warrington NM, et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat Genet. 2012;44(5):526–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Felix JF, Bradfield JP, Monnereau C, van der Valk RJ, Stergiakouli E, Chesi A, et al. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index. Hum Mol Genet. 2016;25(2):389–403.

    Article  CAS  PubMed  Google Scholar 

  25. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y, Duren WL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science. 2007;316(5829):1341–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Speakman JR. The ‘Fat mass and obesity Related’ (FTO) gene: mechanisms of impact on obesity and energy balance. Curr Obes Rep. 2015;4(1):73–91.

    Article  PubMed  Google Scholar 

  27. Andreasen CH, Stender-Petersen KL, Mogensen MS, Torekov SS, Wegner L, Andersen G, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes. 2008;57(1):95–101.

    Article  CAS  PubMed  Google Scholar 

  28. Tschritter O, Preissl H, Yokoyama Y, Machicao F, Häring HU, Fritsche A. Variation in the FTO gene locus is associated with cerebrocortical insulin resistance in humans. Diabetologia. 2007;50(12):2602–3.

    Article  CAS  PubMed  Google Scholar 

  29. Wåhlén K, Sjölin E, Hoffstedt J. The common rs9939609 gene variant of the fat mass and obesity associated gene (FTO) is related to fat cell lipolysis. J Lipid Res. 2008;49(3):607–11.

    Article  PubMed  Google Scholar 

  30. Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet. 2010;18(9):1054–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan S, Scherag A, Janssen OE, Hahn S, Lahner H, Dietz T, et al. Large effects on body mass index and insulin resistance of fat mass and obesity associated gene (FTO) variants in patients with polycystic ovary syndrome (PCOS). BMC Med Genet. 2010;11:12.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wojciechowski P, Lipowska A, Rys P, Ewens KG, Franks S, Tan S, et al. Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis. Diabetologia. 2012;55(10):2636–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Müller TD, Greene BH, Bellodi L, Cavallini MC, Cellini E, Di Bella D, et al. Fat mass and obesity-associated gene (FTO) in eating disorders: evidence for association of the rs9939609 obesity risk allele with bulimia nervosa and anorexia nervosa. Obes Facts. 2012;5(3):408–19.

    Article  PubMed  Google Scholar 

  34. Liu X, Hinney A, Scholz M, Scherag A, Tönjes A, Stumvoll M, et al. Indications for potential parent-of-origin effects within the FTO gene. PLoS One. 2015;10(3):e0119206.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 2009;85(1):106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Davies RW, Lau P, Naing T, Nikpay M, Doelle H, Harper ME, et al. A 680 kb duplication at the FTO locus in a kindred with obesity and a distinct body fat distribution. Eur J Hum Genet. 2013;21(12):1417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Meyre D, Proulx K, Kawagoe-Takaki H, Vatin V, Gutiérrez-Aguilar R, Lyon D, et al. Prevalence of loss-of-function FTO mutations in lean and obese individuals. Diabetes. 2010;59(1):311–8.

    Article  CAS  PubMed  Google Scholar 

  38. Volckmar AL, Han CT, Pütter C, Haas S, Vogel CI, Knoll N, et al. Analysis of genes involved in body weight regulation by targeted re-sequencing. PLoS One. 2016;11(2):e0147904.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gerken T, Girard CA, Tung YC, Webby CJ, Saudek V, Hewitson KS, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318(5855):1469–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sanchez-Pulido L, Andrade-Navarro MA. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem. 2007;8:23.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berulava T, Ziehe M, Klein-Hitpass L, Mladenov E, Thomale J, Rüther U, et al. FTO levels affect RNA modification and the transcriptome. Eur J Hum Genet. 2013;21(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  42. Berulava T, Rahmann S, Rademacher K, Klein-Hitpass L, Horsthemke B. N6-Adenosine methylation in MiRNAs. PLoS One. 2015;10(2):e0118438.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC, et al. Inactivation of the Fto gene protects from obesity. Nature. 2009;458(7240):894–8.

    Article  CAS  PubMed  Google Scholar 

  44. Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, et al. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010;42(12):1086–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373(10):895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Landgraf K, Scholz M, Kovacs P, Kiess W, Körner A. FTO obesity risk variants are linked to adipocyte IRX3 expression and BMI of children - relevance of FTO variants to defend body weight in lean children? PLoS One. 2016;11(8):e0161739.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Young AI, Wauthier F, Donnelly P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat Commun. 2016;7:12724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Livingstone KM, Celis-Morales C, Papandonatos GD, Erar B, Florez JC, Jablonski KA, et al. FTO genotype and weight loss: systematic review and meta-analysis of 9563 individual participant data from eight randomised controlled trials. BMJ. 2016;i4707:354.

    Google Scholar 

  49. Ried JS, Jeff MJ, Chu AY, Bragg-Gresham JL, van Dongen J, Huffman JE, et al. A principal component meta-analysis on multiple anthropometric traits identifies novel loci for body shape. Nat Commun. 2016;7:13357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, et al. An atlas of genetic correlations across human diseases and traits. Nat Genet. 2015;47(11):1236–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anttila V, Bulik-Sullivan B, Finucane HK, Bras J, Duncan L, Escott-Price V, et al. Analysis of shared heritability in common disorders of the brain. BioRxiv. 2016. https://doi.org/10.1101/048991.

  52. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature. 2016;533(7604):539–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hinney A, Albayrak O, Antel J, Volckmar AL, Sims R, Chapman J, et al. Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer's disease and obesity. Am J Med Genet B Neuropsychiatr Genet. 2014;165B(4):283–93.

    Article  PubMed  Google Scholar 

  54. Albayrak Ö, Pütter C, Volckmar AL, Cichon S, Hoffmann P, Nöthen MM, et al. Common obesity risk alleles in childhood attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2013;162B(4):295–305.

    Article  PubMed  Google Scholar 

  55. Boraska V, Franklin CS, Floyd JA, Thornton LM, Huckins LM, Southam L, et al. A genome-wide association study of anorexia nervosa. Mol Psychiatry. 2014;19(10):1085–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hinney A, Kesselmeier M, Jall S, Volckmar AL, Föcker M, Antel J, et al. Evidence for three genetic loci involved in both anorexia nervosa risk and variation of body mass index. Mol Psychiatry. 2017;22(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  57. van Dijk SJ, Molloy PL, Varinli H, Morrison JL, Muhlhausler BS, Members of EpiSCOPE. Epigenetics and human obesity. Int J Obes. 2015;39(1):85–97.

    Article  Google Scholar 

  58. Slomko H, Heo HJ, Einstein FH. Minireview: epigenetics of obesity and diabetes in humans. Endocrinology. 2012;153(3):1025–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wallner S, Schröder C, Leitão E, Berulava T, Haak C, Beißer D, et al. Epigenetic dynamics of monocyte-to-macrophage differentiation. Epigenetics Chromatin. 2016;9:33.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–8.

    Article  CAS  PubMed  Google Scholar 

  61. Rounge TB, Page CM, Lepistö M, Ellonen P, Andreassen BK, Weiderpass E. Genome-wide DNA methylation in saliva and body size of adolescent girls. Epigenomics. 2016;8(11):1495–505.

    Article  CAS  PubMed  Google Scholar 

  62. Wilson LE, Harlid S, Xu Z, Sandler DP, Taylor JA. An epigenome-wide study of body mass index and DNA methylation in blood using participants from the sister study cohort. Int J Obes. 2017;41(1):194–9.

    Article  CAS  Google Scholar 

  63. Kühnen P, Handke D, Waterland RA, Hennig BJ, Silver M, Fulford AJ, et al. Interindividual variation in DNA methylation at a putative POMC metastable Epiallele is associated with obesity. Cell Metab. 2016;24(3):502–9.

    Article  PubMed  Google Scholar 

  64. Wheeler E, Huang N, Bochukova EG, Keogh JM, Lindsay S, Garg S, et al. Genome-wide SNP and CNV analysis identifies common and low-frequency variants associated with severe early-onset obesity. Nat Genet. 2013;45(5):513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Graff M, Ngwa JS, Workalemahu T, Homuth G, Schipf S, Teumer A, et al. Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course. Hum Mol Genet. 2013;22(17):3597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gong J, Schumacher F, Lim U, Hindorff LA, Haessler J, Buyske S, et al. Fine mapping and identification of BMI loci in African Americans. Am J Hum Genet. 2013;93(4):661–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Guo Y, Baum LW, Sham PC, Wong V, Ng PW, Lui CH, et al. Two-stage genome-wide association study identifies variants in CAMSAP1L1 as susceptibility loci for epilepsy in Chinese. Hum Mol Genet. 2012;21(5):1184–9.

    Article  CAS  PubMed  Google Scholar 

  68. Wen W, Cho YS, Zheng W, Dorajoo R, Kato N, Qi L, et al. Meta-analysis identifies common variants associated with body mass index in east Asians. Nat Genet. 2012;44(3):307–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Benzinou M, Creemers JWM, Choquet H, Lobbens S, Dina C, Durand E, et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nat Genet. 2008;40(8):943–5.

    Article  CAS  PubMed  Google Scholar 

  70. Okada Y, Sim X, Go MJ, JY W, Gu D, Takeuchi F, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 2012;44(8):904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Paternoster L, Evans DM, Nohr EA, Holst C, Gaborieau V, Brennan P, et al. Genome-wide population-based association study of extremely overweight young adults--the GOYA study. PLoS One. 2011;6(9):e24303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bakshi A, Zhu Z, Vinkhuyzen AA, Hill WD, McRae AF, Visscher PM, et al. Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Sci Rep. 2016;6:32894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ichimura A, Hirasawa A, Poulain-Godefroy O, Bonnefond A, Hara T, Yengo L, et al. Dysfunction of lipid sensor GPR120 leads to obesity in both mouse and human. Nature. 2012;483(7389):350–4.

    Article  CAS  PubMed  Google Scholar 

  74. Jiao H, Arner P, Hoffstedt J, Brodin D, Dubern B, Czernichow S, et al. Genome wide association study identifies KCNMA1 contributing to human obesity. BMC Med Genet. 2011;4:51.

    CAS  Google Scholar 

  75. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet. 2007;39(6):724–6.

    Article  CAS  PubMed  Google Scholar 

  76. Scuteri A, Sanna S, Chen W-M, Uda M, Albai G, Strait J, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3(7):e115.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cho YS, Go MJ, Kim YJ, Heo JY, JH O, Ban HJ, et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41(5):527–34.

    Article  CAS  PubMed  Google Scholar 

  78. Wang K, Li WD, Zhang CK, Wang Z, Glessner JT, Struan F, et al. A genome-wide association study on obesity and obesity-related traits. PLoS One. 2011;6(4):e18939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pei YF, Zhang L, Liu Y, Li J, Shen H, Liu YZ, et al. Meta-analysis of genome-wide association data identifies novel susceptibility loci for obesity. Hum Mol Genet. 2014;23(3):820–30.

    Article  CAS  PubMed  Google Scholar 

  80. Melén E, Granell R, Kogevinas M, Strachan D, Gonzalez JR, Wjst M, et al. Genome-wide association study of body mass index in 23 000 individuals with and without asthma. Clin Exp Allergy. 2013;43(4):463–74.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments This work was supported by grants from the Bundesministerium für Bildung und Forschung (NGFNplus 01GS0820) and the Deutsche Forschungsgemeinschaft (HE 1446/4-1, HI 865/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Hinney MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Hinney, A., Giuranna, J. (2018). Polygenic Obesity. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_10

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics