EVE: A Framework for Experiments in Virtual Environments

  • Jascha GrübelEmail author
  • Raphael Weibel
  • Mike Hao Jiang
  • Christoph Hölscher
  • Daniel A. Hackman
  • Victor R. Schinazi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10523)


EVE is a framework for the setup, implementation, and evaluation of experiments in virtual reality. The framework aims to reduce repetitive and error-prone steps that occur during experiment-setup while providing data management and evaluation capabilities. EVE aims to assist researchers who do not have specialized training in computer science. The framework is based on the popular platforms of Unity and MiddleVR. Database support, visualization tools, and scripting for R make EVE a comprehensive solution for research using VR. In this article, we illustrate the functions and flexibility of EVE in the context of an ongoing VR experiment called Neighbourhood Walk.



The authors would like to thank Ioannis Giannopoulos and Tyler Thrash for the valuable comments and suggestions during various drafts of this manuscript. We would also like to thank Katja Wolf and Fabian Schewetofski for the development and design of the evaluation screen, GUI interface, and many other features that have now become an integral part of the EVE framework. We also thank VIS Games for the free provision of the 3D models used in our research. Partial support for Daniel Hackman was provided by the Robert Wood Johnson Foundation Health and Society Scholars Program at the University of Wisconsin-Madison in the Department of Population Health Sciences.


  1. 1.
    ADInstruments: Labchart (2016).
  2. 2.
    Annett, M., Bischof, W.F.: VR for everybody: the SNaP framework. In: SEARIS Workshop in IEEE Virtual Reality, pp. 131–132 (2016)Google Scholar
  3. 3.
    Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR juggler: a virtual platform for virtual reality application development. In: 2001 Proceedings of Virtual Reality, pp. 89–96. IEEE (2016)Google Scholar
  4. 4.
    Billen, M.I., Kreylos, O., Hamann, B., Jadamec, M.A., Kellogg, L.H., Staadt, O., Sumner, D.Y.: A geoscience perspective on immersive 3D gridded data visualization. Comput. Geosci. 34(9), 1056–1072 (2016)CrossRefGoogle Scholar
  5. 5.
    Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(I), 49–59 (2016)Google Scholar
  6. 6.
    Chair of Cognitive Science, ETH: EVE: A framework for experiments in virtual environments (2016).
  7. 7.
    Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142 (2016)Google Scholar
  8. 8.
    Dara-Abrams, D., Schinazi, V.R.: Virtual SILCton (2016).
  9. 9.
    Dassault Systemes: Virtools (2016).
  10. 10.
    Eon Reality: Eon studio (2016).
  11. 11.
    Fagerholt, E., Lorentzon, M.: Beyond the HUD. User interfaces for increased player immersion in FPS games. Ph.D. thesis, Chalmers University of Technology (2016)Google Scholar
  12. 12.
    Fagin, R.: Normal forms and relational database operators. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, pp. 153–160. ACM (1979)Google Scholar
  13. 13.
    Gaggioli, A.: Using Virtual Reality in Experimental Psychology, vol. 2. IOS Press, Amsterdam (2016)Google Scholar
  14. 14.
    Grübel, J.: Assessing human interface device interaction in virtual environments. Bachelor thesis. ETH Zürich (2016).
  15. 15.
    Hackman, D.A., Betancourt, L.M., Brodsky, N.L., Hurt, H., Farah, M.J.: Neighborhood disadvantage and adolescent stress reactivity. Front. Hum. Neurosci. 6, 277 (2012)CrossRefGoogle Scholar
  16. 16.
    Hartig, T., Mitchell, R., De Vries, S., Frumkin, H.: Nature and health. Ann. Rev. Public Health 35, 207–228 (2014)CrossRefGoogle Scholar
  17. 17.
    Health Level Seven: HL7 Message Standard (2016).
  18. 18.
    Hegarty, M., Richardson, A.E., Montello, D.R., Lovelace, K., Subbiah, I.: Development of a self-report measure of environmental spatial ability. Intelligence 30(5), 425–447 (2016)CrossRefGoogle Scholar
  19. 19.
    HTC: HTC VIVE (2016).
  20. 20.
    Kort, Y.A.W., Ijsselsteijn, W.A., Kooijman, J., Schuurmans, Y.: Virtual laboratories: comparability of real and virtual environments for environmental psychology. Presence Teleoperators Virtual Environ. 12(4), 360–373 (2016)CrossRefGoogle Scholar
  21. 21.
    Kraemer, D.J.M., Schinazi, V.R., Cawkwell, P.B., Tekriwal, A., Epstein, R.A., Thompson-Schill, S.L.: Verbalizing, visualizing, and navigating: the effect of strategies on encoding a large-scale virtual environment. J. Exp. Psychol. Learn. Mem. Cogn. 43, 611–621 (2016). CrossRefGoogle Scholar
  22. 22.
    Kreylos, O.: Environment-independent VR development. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 901–912. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  23. 23.
    Kuliga, S.F., Thrash, T., Dalton, R.C., Hölscher, C.: Virtual reality as an empirical research tool - exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2016)CrossRefGoogle Scholar
  24. 24.
    Laha, B., Sensharma, K., Schiffbauer, J.D., Bowman, D.A.: Effects of immersion on visual analysis of volume data. IEEE Trans. Vis. Comput. Graph. 18(4), 597–606 (2016)CrossRefGoogle Scholar
  25. 25.
    Lloyd, J., Persaud, N.V., Powell, T.E.: Equivalence of real-world and virtual-reality route learning: a pilot study. Cyberpsychol. Behav. 12(4), 423–427 (2016)CrossRefGoogle Scholar
  26. 26.
    Loomis, J.M., Blascovich, J.J.: Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31(4), 557–564 (2016)CrossRefGoogle Scholar
  27. 27.
    Maguire, E.A., Nannery, R., Spiers, H.J.: Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129(11), 2894–2907 (2006)CrossRefGoogle Scholar
  28. 28.
    Marchette, S.A., Vass, L.K., Ryan, J., Epstein, R.A.: Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nature Neurosci. 17(11), 1598–1606 (2016)CrossRefGoogle Scholar
  29. 29.
    McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (2016)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Mechdyne: CAVELib (2016).
  32. 32.
    Meehan, M., Brooks, F.P.: Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. (ToG) 21, 645–652 (2016)Google Scholar
  33. 33.
    Meehan, M., Razzaque, S., Insko, B., Whitton Jr., M., Brooks, F.P.: Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30(3), 239–258 (2016)CrossRefGoogle Scholar
  34. 34.
    Meijer, F., Geudeke, B.L.: Navigating through virtual environments: visual realism improves spatial cognition. CyberPsychol. Behav. 12(5), 517–521 (2016)CrossRefGoogle Scholar
  35. 35.
    MiddleVR: MiddleVR for unity (2016).
  36. 36.
    Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies 34, 129–153 (2016)MathSciNetGoogle Scholar
  37. 37.
    Oculus VR LLC: Oculus rift (2016).
  38. 38.
    Odgers, C.L., Caspi, A., Bates, C.J., Sampson, R.J., Moffitt, T.E.: Systematic social observation of children’s neighborhoods using Google Street View: a reliable and cost-effective method. J. Child Psychol. Psychiatry 53(10), 1009–1017 (2012)CrossRefGoogle Scholar
  39. 39.
    Ooms, J., James, D., DebRoy, S., Wickham, H., Horner, J.: RMySQL: database interface and ‘MySQL’ driver for R (2016).
  40. 40.
    R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016).
  41. 41.
    R Special Interest Group on Databases (R-SIG-DB), Wickham, H., Müller, K.: DBI: R database interface (2016).
  42. 42.
    Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Proceedings of EUROGRAPHICS. vol. 9, pp. 105–106 (2016)Google Scholar
  43. 43.
    Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: ACM International Conference Proceeding Series, vol. 23, pp. 123–130 (2016)Google Scholar
  44. 44.
    Riecke, B.E., Bodenheimer, B., McNamara, T.P., Williams, B., Peng, P., Feuereissen, D.: Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds.) Spatial Cognition 2010. LNCS (LNAI), vol. 6222, pp. 234–247. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  45. 45.
    Riecke, B.E., Schulte-Pelkum, J.: An integrative approach to presence and self-motion perception research. In: Lombard, M., Biocca, F., Freeman, J., Ijsselsteijn, W., Schaevitz, R.J. (eds.) Immersed in Media, pp. 187–235. Springer, Cham (2016). Google Scholar
  46. 46.
    Ruddle, R.A., Lessels, S.: For efficient navigational rich visual scene search, humans require full physical movement, but not a rich visual scene. Psychol. Sci. 17(6), 460–465 (2016)CrossRefGoogle Scholar
  47. 47.
    Sampson, R.J., Raudenbush, S.W.: Systematic social observation of public spaces: a new look at disorder in urban Neighborhoods 1. Am. J. Sociol. 105(3), 603–651 (1999)CrossRefGoogle Scholar
  48. 48.
    Schinazi, V.R., Nardi, D., Newcombe, N.S., Shipley, T.F., Epstein, R.A.: Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23(6), 515–528 (2016)CrossRefGoogle Scholar
  49. 49.
    Schulze, J.P., Prudhomme, A., Weber, P., DeFanti, T.A.: CalVR: an advanced open source virtual reality software framework. In: IS&T/SPIE Electronic Imaging, vol. 8649, pp. 864902–864908 (2016).
  50. 50.
    SensoMotoric Instruments: SMI Eye-Tracking (2016).
  51. 51.
    Sherman, W.R.: FreeVR (2016).
  52. 52.
    Slater, M., Khanna, P., Mortensen, J., Yu, I.: Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput. Graph. Appl. 29(3), 76–84 (2016)CrossRefGoogle Scholar
  53. 53.
    Smith, N.G., Cutchin, S., Kooima, R., Ainsworth, R.A., Sandin, D.J., Schulze, J., Prudhomme, A., Kuester, F., Levy, T.E., DeFanti, T.A.: Cultural heritage omni-stereo panoramas for immersive cultural analytics - from the Nile to the Hijaz. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 552–557 (2013)Google Scholar
  54. 54.
    Spiers, H.J., Maguire, E.A.: Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4), 1826–1840 (2006)CrossRefGoogle Scholar
  55. 55.
    Sturz, B.R., Bodily, K.D., Katz, J.S.: Evidence against integration of spatial maps in humans. Anim. Cogn. 9(207), 207–217 (2006)CrossRefGoogle Scholar
  56. 56.
    Taube, J.S., Valerio, S., Yoder, R.M.: Is navigation in virtual reality with fMRI really navigation? J. Cogn. Neurosci. 25(7), 1008–1019 (2016)CrossRefGoogle Scholar
  57. 57.
    Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, vol. 900, pp. 55–61 (2016)Google Scholar
  58. 58.
    Unity Technologies: Unity3D (2016).
  59. 59.
    Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks, F.P.: Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364 (2016)Google Scholar
  60. 60.
    Vanoni, D., Ge, L., Kuester, F.: Intuitive visualization of reflectance transformation imaging for interactive analysis of cultural artifacts. In: International Conference on Augmented and Virtual Reality, vol. 8853, pp. 397–404 (2016)Google Scholar
  61. 61.
    Vass, L.K., Copara, M.S., Seyal, M., Shahlaie, K., Farias, S.T., Shen, P.Y., Ekstrom, A.D.: Oscillations go the distance: low-frequency human hippocampal oscillations code spatial distance in the absence of sensory cues during teleportation. Neuron 89(6), 1180–1186 (2016)CrossRefGoogle Scholar
  62. 62.
    VIS Games: Country landscape (2016).
  63. 63.
    Wallet, G., Sauzeon, H., Pala, P.A., Larrue, F., Zheng, X.: Virtual/real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual. Cyberpsychol. Behav. Soc. Networking 14(7), 417–423 (2016)Google Scholar
  64. 64.
    Weisberg, S.M., Schinazi, V.R., Newcombe, N.S., Shipley, T.F., Epstein, R.A.: Variations in cognitive maps: understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 40(3), 669–682 (2016)CrossRefGoogle Scholar
  65. 65.
    Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). CrossRefzbMATHGoogle Scholar
  66. 66.
    Wickham, H., Francois, R.: dplyr: A grammar of data manipulation (2016).
  67. 67.
    WorldViz LLC: Vizard (2016).
  68. 68.
    Zatun: City development (2016).

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jascha Grübel
    • 1
    Email author
  • Raphael Weibel
    • 1
  • Mike Hao Jiang
    • 1
  • Christoph Hölscher
    • 1
  • Daniel A. Hackman
    • 2
  • Victor R. Schinazi
    • 1
  1. 1.Chair of Cognitive ScienceETH ZürichZürichSwitzerland
  2. 2.USC Suzanne Dworak-Peck School of Social WorkUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations