Skip to main content

The Flexible Group Spatial Keyword Query

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10538)

Abstract

We propose the flexible group spatial keyword query and algorithms to process three variants of the query in the spatial textual domain: (i) the group nearest neighbor with keywords query, which finds the data object that optimizes the aggregate cost function for the whole group Q of size n query objects, (ii) the subgroup nearest neighbor with keywords query, which finds the optimal subgroup of query objects and the data object that optimizes the aggregate cost function for a given subgroup size m (\(m \le n\)), and (iii) the multiple subgroup nearest neighbor with keywords query, which finds optimal subgroups and corresponding data objects for each of the subgroup sizes in the range [m, n]. We design query processing algorithms based on branch-and-bound and best-first paradigms. Finally, we conduct extensive experiments with two real datasets to show the efficiency of the proposed algorithms.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68155-9_1
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   54.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-68155-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   69.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    webscope.sandbox.yahoo.com, www.yelp.com/academic_dataset.

References

  1. Ali, M.E., Khan, S.-u.-I., Khan, S.M.S., Nasim, M.: Spatio-temporal keyword search for nearest neighbour queries. J. Locat. Based Serv. 9(2), 113–137 (2015)

    Google Scholar 

  2. Ali, M.E., Tanin, E., Scheuermann, P., Nutanong, S., Kulik, L.: Spatial consensus queries in a collaborative environment. TSAS 2(1), 3:1–3:37 (2016)

    CrossRef  Google Scholar 

  3. Cao, X., Cong, G., Guo, T., Jensen, C.S., Ooi, B.C.: Efficient processing of spatial group keyword queries. TODS 40(2), 13 (2015)

    MathSciNet  CrossRef  Google Scholar 

  4. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384 (2011)

    Google Scholar 

  5. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337–348 (2009)

    Google Scholar 

  6. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)

    Google Scholar 

  7. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. TODS 24(2), 265–318 (1999)

    CrossRef  Google Scholar 

  8. Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: SIGMOD, pp. 1009–1020 (2011)

    Google Scholar 

  9. Li, Z., Lee, K.C., Zheng, B., Lee, W.-C., Lee, D., Wang, X.: IR-tree: an efficient index for geographic document search. TKDE 23(4), 585–599 (2011)

    Google Scholar 

  10. Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. TODS 30(2), 529–576 (2005)

    CrossRef  Google Scholar 

  11. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. ACM SIGMOD Rec. 24, 71–79 (1995)

    CrossRef  Google Scholar 

  12. Yao, K., Li, J., Li, G., Luo, C.: Efficient group top-k spatial keyword query processing. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9931, pp. 153–165. Springer, Cham (2016). doi:10.1007/978-3-319-45814-4_13

    CrossRef  Google Scholar 

  13. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search in spatial databases: Towards searching by document. In: ICDE, pp. 688–699 (2009)

    Google Scholar 

Download references

Acknowledgment

This research is partially supported by the ICT Division, Government of the People’s Republic of Bangladesh. Jianzhong Qi is supported by The University of Melbourne Early Career Researcher Grant (project number 603049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Eunus Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ahmad, S., Kamal, R., Ali, M.E., Qi, J., Scheuermann, P., Tanin, E. (2017). The Flexible Group Spatial Keyword Query. In: Huang, Z., Xiao, X., Cao, X. (eds) Databases Theory and Applications. ADC 2017. Lecture Notes in Computer Science(), vol 10538. Springer, Cham. https://doi.org/10.1007/978-3-319-68155-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68155-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68154-2

  • Online ISBN: 978-3-319-68155-9

  • eBook Packages: Computer ScienceComputer Science (R0)