The Flexible Group Spatial Keyword Query

  • Sabbir Ahmad
  • Rafi Kamal
  • Mohammed Eunus AliEmail author
  • Jianzhong Qi
  • Peter Scheuermann
  • Egemen Tanin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10538)


We propose the flexible group spatial keyword query and algorithms to process three variants of the query in the spatial textual domain: (i) the group nearest neighbor with keywords query, which finds the data object that optimizes the aggregate cost function for the whole group Q of size n query objects, (ii) the subgroup nearest neighbor with keywords query, which finds the optimal subgroup of query objects and the data object that optimizes the aggregate cost function for a given subgroup size m (\(m \le n\)), and (iii) the multiple subgroup nearest neighbor with keywords query, which finds optimal subgroups and corresponding data objects for each of the subgroup sizes in the range [m, n]. We design query processing algorithms based on branch-and-bound and best-first paradigms. Finally, we conduct extensive experiments with two real datasets to show the efficiency of the proposed algorithms.



This research is partially supported by the ICT Division, Government of the People’s Republic of Bangladesh. Jianzhong Qi is supported by The University of Melbourne Early Career Researcher Grant (project number 603049).


  1. 1.
    Ali, M.E., Khan, S.-u.-I., Khan, S.M.S., Nasim, M.: Spatio-temporal keyword search for nearest neighbour queries. J. Locat. Based Serv. 9(2), 113–137 (2015)Google Scholar
  2. 2.
    Ali, M.E., Tanin, E., Scheuermann, P., Nutanong, S., Kulik, L.: Spatial consensus queries in a collaborative environment. TSAS 2(1), 3:1–3:37 (2016)CrossRefGoogle Scholar
  3. 3.
    Cao, X., Cong, G., Guo, T., Jensen, C.S., Ooi, B.C.: Efficient processing of spatial group keyword queries. TODS 40(2), 13 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384 (2011)Google Scholar
  5. 5.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337–348 (2009)Google Scholar
  6. 6.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIGMOD, pp. 47–57 (1984)Google Scholar
  7. 7.
    Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. TODS 24(2), 265–318 (1999)CrossRefGoogle Scholar
  8. 8.
    Li, Y., Li, F., Yi, K., Yao, B., Wang, M.: Flexible aggregate similarity search. In: SIGMOD, pp. 1009–1020 (2011)Google Scholar
  9. 9.
    Li, Z., Lee, K.C., Zheng, B., Lee, W.-C., Lee, D., Wang, X.: IR-tree: an efficient index for geographic document search. TKDE 23(4), 585–599 (2011)Google Scholar
  10. 10.
    Papadias, D., Tao, Y., Mouratidis, K., Hui, C.K.: Aggregate nearest neighbor queries in spatial databases. TODS 30(2), 529–576 (2005)CrossRefGoogle Scholar
  11. 11.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. ACM SIGMOD Rec. 24, 71–79 (1995)CrossRefGoogle Scholar
  12. 12.
    Yao, K., Li, J., Li, G., Luo, C.: Efficient group top-k spatial keyword query processing. In: Li, F., Shim, K., Zheng, K., Liu, G. (eds.) APWeb 2016. LNCS, vol. 9931, pp. 153–165. Springer, Cham (2016). doi: 10.1007/978-3-319-45814-4_13 CrossRefGoogle Scholar
  13. 13.
    Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search in spatial databases: Towards searching by document. In: ICDE, pp. 688–699 (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sabbir Ahmad
    • 1
  • Rafi Kamal
    • 1
  • Mohammed Eunus Ali
    • 1
    Email author
  • Jianzhong Qi
    • 2
  • Peter Scheuermann
    • 3
  • Egemen Tanin
    • 2
  1. 1.Department of CSEBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.School of CISUniversity of MelbourneMelbourneAustralia
  3. 3.Department of EECSNorthwestern UniversityEvanstonUSA

Personalised recommendations