Skip to main content

Curiosity’s Chemistry Instruments

  • Chapter
  • First Online:
The Design and Engineering of Curiosity

Part of the book series: Springer Praxis Books ((SPACEE))

  • 2808 Accesses

Abstract

Curiosity has four instruments that study the chemistry of Martian materials. Two of them focus on elemental abundances. ChemCam is a remote sensing instrument, able to detect the elemental composition of a rock or soil from a distance of up to 7 meters by shooting it with a laser, a technique deployed in space for the first time on Curiosity. The Alpha Particle X-Ray Spectrometer (APXS) is a contact science instrument to examine the compositions of rocks and soils reached by the arm, and has a long Martian heritage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Two papers published before the mission described ChemCam: Maurice et al. (2012) and Wiens et al. (2012)

  2. 2.

    Peret et al. (2016)

  3. 3.

    Roger Wiens, personal communication, email dated March 14, 2016

  4. 4.

    Described in detail in Peters et al. (2016)

  5. 5.

    Maurice et al. (2016)

  6. 6.

    Maurice et al. (2016)

  7. 7.

    Ollila et al. (2014)

  8. 8.

    Lanza et al. (2016)

  9. 9.

    Maurice et al. (2016)

  10. 10.

    Roger Wiens, personal communication, email dated March 26, 2016

  11. 11.

    Roger Wiens, personal communication, email dated March, 26, 2016

  12. 12.

    Cousin et al. (2014)

  13. 13.

    Roger Wiens, personal communication, email dated March 26, 2016

  14. 14.

    Francis et al. (2016)

  15. 15.

    Francis et al. (2017)

  16. 16.

    Maurice et al. (2016)

  17. 17.

    Roger Wiens, personal communication, email dated December 17, 2015

  18. 18.

    William Rapin, personal communication, email dated April 5, 2016

  19. 19.

    There is no peer-reviewed publication describing the APXS as there is for most other instruments; there is only an LPSC abstract: Gellert et al. (2009); two other good sources of information on the instrument and its performance on Mars are Gellert et al. (2015) and Campbell et al. (2012)

  20. 20.

    Farley et al. (2014)

  21. 21.

    Dickinson et al. (2012)

  22. 22.

    Perrett et al. (2017)

  23. 23.

    Slavney (2013)

  24. 24.

    Dickinson et al. (2012)

  25. 25.

    Ralf Gellert, personal communication, email dated May 10, 2016

  26. 26.

    Mariek Schmidt, personal communication, email dated April 17, 2017

  27. 27.

    Ashwin Vasavada, personal communication, email dated March 28, 2017

  28. 28.

    Ralf Gellert, personal communication, email dated May 10, 2016

  29. 29.

    Gellert et al. (2015)

  30. 30.

    Ralf Gellert, personal communication, email dated May 10, 2016

  31. 31.

    Berger et al. (2014)

  32. 32.

    Berger et al. (2016)

  33. 33.

    Thompson et al. (2016)

  34. 34.

    Schmidt et al. (2016)

  35. 35.

    Slavney (2013)

  36. 36.

    Ralf Gellert, personal communication, email dated May 10, 2016

  37. 37.

    The main reference for the description of the CheMin instrument is Blake et al. (2012); a useful summary of how it has worked on Mars is in Downs (2015)

  38. 38.

    Vaniman et al. (2014)

  39. 39.

    Léveillé et al. (2015)

  40. 40.

    David Vaniman, personal communication, email dated April 5, 2017

  41. 41.

    David Vaniman, personal communication, email dated March 8, 2017

  42. 42.

    See, for example, Treiman et al. (2016) and Morris R et al (2016)

  43. 43.

    Morris et al. (2016)

  44. 44.

    The SAM instrument description paper is Mahaffy et al. (2012); useful summaries of post-landing performance are in Millan et al. (2016) and Franz et al. (2017)

  45. 45.

    Paul Mahaffy, personal communication, email dated April 8, 2017

  46. 46.

    Webster et al. (2014)

  47. 47.

    Paul Mahaffy, personal communication, email dated April 8, 2017

  48. 48.

    Mahaffy et al. (2013)

  49. 49.

    Charles Malespin, personal communication, email dated April 12, 2017

  50. 50.

    Atreya et al. (2013)

  51. 51.

    ibid.

  52. 52.

    Conrad et al. (2016)

  53. 53.

    Lakdawalla (2013)

  54. 54.

    Charles Malespin, personal communication, email dated April 12, 2017

REFERENCES

  • Atreya S et al (2013) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Lett. 40:5605–5609, DOI: 10.1002/2013GL057763

    Google Scholar 

  • Berger J et al (2014) MSL-APXS titanium observation tray measurements: Laboratory experiments and results for the Rocknest fines at the Curiosity field site in Gale Crater, Mars. J Geophys Res 119:1046–1060, DOI: 10.1002/2013JE004519

    Google Scholar 

  • Berger J et al (2016) A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater. Geophys Res Lett 43:67–75, DOI: 10.1002/2015GL066675

    Google Scholar 

  • Blake D et al (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci Rev 170:341–399, DOI: 10.1007/s11214-012-9905-1

    Google Scholar 

  • Campbell et al (2012) Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer. Space Sci Rev 170:319–340, DOI 10.1007/s11214-012-9873-5

    Google Scholar 

  • Conrad P et al (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet Sci Lett 454:1–9, DOI: 10.1016/j.epsl.2016.08.028

    Google Scholar 

  • Cousin A et al (2014) ChemCam blind targets: a helpful way of analyzing soils and rocks along the traverse. Paper presented at the 45th Lunar and Planetary Science Conference, The Woodlands, Texas, 17–21 Mar 2014

    Google Scholar 

  • Dickinson C S et al (2012) APXS on Mars Science Laboratory - First results from post-landing checkout. Presentation to the International Workshop on Instrumentation for Planetary Missions, Greenbelt, Maryland, USA 10–12 Oct 2012

    Google Scholar 

  • Downs R and the MSL Science Team (2015) Determining mineralogy on Mars with the CheMin X-ray diffractometer. Elements 11:45–50, DOI: 10.2113/gselements.11.1.45

    Google Scholar 

  • Farley K et al (2014) In situ radiometric and exposure age dating of the Martian surface. Science, DOI: 10.1126/science.1247166

    Google Scholar 

  • Francis R et al (2016) AEGIS intelligent targeting deployed for the Curiosity rover’s ChemCam instrument. Paper presented at the 47th Lunar and Planetary Science Conference, The Woodlands, Texas, 21–25 Mar 2016

    Google Scholar 

  • Francis R et al (2017) AEGIS autonomous targeting for ChemCam on MSL: Results from the first 220 sols of routine science operations. Paper presented at the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, 20–24 Mar 2017

    Google Scholar 

  • Franz H et al (2017) Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Pl Space Sci 138:44–54, DOI: 10.1016/j.pss.2017.01.014

    Google Scholar 

  • Gellert R et al (2009) The Alpha-Particle-X-ray-Spectrometer (APXS) for the Mars Science Laboratory (MSL) rover mission. Paper presented at the 40th Lunar and Planetary Science Conference, The Woodlands, Texas, 23–27 Mar 2009

    Google Scholar 

  • Gellert R et al (2015) In Situ Compositional Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA’s Mars Rovers. Elements 11:39–44, DOI: 10.2113/gselements.11.1.39

    Google Scholar 

  • JPL (2009) Sample Analysis at Mars. https://msl-scicorner.jpl.nasa.gov/Instruments/SAM/ Accessed 29 Apr 2016.

    Google Scholar 

  • Lakdawalla E (2013) DPS 2013: Confusing Curiosity SAM results. http://www.planetary.org/blogs/emily-lakdawalla/2013/10151336-dps-2013-confusing-curiosity.html Article dated 15 Oct 2013, accessed 12 Apr 2017

    Google Scholar 

  • Lanza N et al (2016) Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geo. Res. Lett. 43:7398–7407, DOI: 10.1002/2016GL069109

    Google Scholar 

  • Léveillé et al (2015) Jarosite in Gale crater, Mars: The importance of temporal and spatial variability and implications for habitability. Paper presented at the 46th Lunar and Planetary Science Conference, The Woodlands, Texas, 16–20 Mar 2015

    Google Scholar 

  • Mahaffy P et al (2012) The Sample Analysis at Mars investigation and instrument suite. Space Sci Rev 170:401–478, DOI: 10.1007/s11214-012-9879-z

    Google Scholar 

  • Mahaffy P et al (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover (supplementary materials). Science DOI: 10.1126/science.1237966

    Google Scholar 

  • Maurice S et al (2012) The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci Rev 170:95–166, DOI: 10.1007/s11214-012-9902-4

    Google Scholar 

  • Maurice S et al (2016) ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J. Anal. At. Spectrom. 31:863–889, DOI: 10.1039/C5JA00417A

    Google Scholar 

  • Millan M et al (2016) In situ analysis of Martian regolith with the SAM experiment during the first Mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements. Pl Space Sci 129:88–102, DOI: 10.1016/j.pss.2016.06.007

    Google Scholar 

  • Morris R et al (2016) Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. PNAS 113:7071–7076, DOI: 10.1073/pnas.1607098113

    Google Scholar 

  • Ollila A et al (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. J. Geophys. Res. Planets 119:255–285, DOI: 10.1002/2013JE004517

    Google Scholar 

  • Peret L et al (2016) Restoration of the autofocus capability of the ChemCam instrument onboard the Curiosity rover. Paper presented at the 14th International Conference on Space Operations, Daejeon, Korea, 16–20 May 2016

    Google Scholar 

  • Perrett G et al (2017) Dust modelling on Martian rock surfaces studied by the Mars Science Laboratory Alpha Particle X-ray Spectrometer. Paper presented at the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, 20–24 Mar 2017

    Google Scholar 

  • Peters S et al (2016) Celestial aspects of Mars Science Laboratory ChemCam sun-safety. Paper presented at the 39th Annual AAS Guidance & Control Conference, Breckenridge, Colorado, 5–10 Feb 2016.

    Google Scholar 

  • Schmidt M et al (2016) APXS classification of lower Mount Sharp bedrock: Silica enrichment and acid alteration. Paper presented at the 47th Lunar and Planetary Science Conference, The Woodlands, Texas, 21–25 Mar 2016

    Google Scholar 

  • Slavney S (2013) Alpha Particle X-ray Spectrometer instrument information. In Mars Science Laboratory (MSL) APXS EDR Data Archive.

    Google Scholar 

  • Thompson L et al (2016) Potassium-rich sandstones within the Gale impact crater, Mars: The APXS perspective. J. Geophys. Res. 121:1981–2003, DOI: 10.1002/2016JE005055

    Google Scholar 

  • Treiman et al (2016) Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J. Geophys. Res. Planets, 121:75–106, DOI: 10.1002/2015JE004932

    Google Scholar 

  • Vaniman D et al (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science, DOI: 10.1126/science.1243480

    Google Scholar 

  • Webster C et al (2014) Mars methane detection and variability at Gale crater (supplementary materials). Science DOI: 10.1126/science.1261713

    Google Scholar 

  • Wiens R et al (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. SSR 170:167–227, DOI: 10.1007/s11214-012-9912-2

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakdawalla, E. (2018). Curiosity’s Chemistry Instruments. In: The Design and Engineering of Curiosity. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-68146-7_9

Download citation

Publish with us

Policies and ethics