Advertisement

Medical Image Processing and Numerical Simulation for Digital Hepatic Parenchymal Blood Flow

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10557)

Abstract

This paper deals with the personalized simulation of blood flow within the liver parenchyma, by considering a complete pipeline of medical image segmentation, organ volume reconstruction, and numerical simulation of blood diffusion. To do so, we employ model-based segmentation algorithms developed with ITK/VTK librairies, CATIA software for volumetric reconstructions based on NURBS and Abaqus solution for adapted simulation of Darcy’s law. After presenting experimental results of each step, we explore scientific and technical bottlenecks so that a valid digital hepatic blood flow phantom may be developed in our future research, in direct relation with current open challenges in this domain.

Keywords

Medical image analysis Model-based segmentation Liver Blood flow simulation 3D reconstruction NURBS 

References

  1. 1.
    Bereciartua, A., et al.: Automatic 3D model-based method for liver segmentation in MRI based on active contours and total variation minimization. Biomed. Signal Process. Control 20, 71–77 (2015)CrossRefGoogle Scholar
  2. 2.
    Bonfiglio, A., et al.: Mathematical modeling of the circulation in the liver lobule. J. Biomech. Eng. 132(11), 1–10 (2010)CrossRefGoogle Scholar
  3. 3.
    Campadelli, P., et al.: Liver segmentation from computed tomography scans: a survey and a new algorithm. Artif. Intell. Med. 45, 185–196 (2009)CrossRefGoogle Scholar
  4. 4.
    Chow, P.K., et al.: The measurement of liver blood flow: a review of experimental and clinical methods. J. Surg. Res. 112(1), 1–11 (2003)CrossRefGoogle Scholar
  5. 5.
    El-Serag, H.B.: Hepatocellular carcinoma. New Engl. J. Med. 365, 1118–1127 (2011)CrossRefGoogle Scholar
  6. 6.
    Hang, S.: TetGen, a delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 11 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  9. 9.
    Kerautret, B., Colom, M., Monasse, P. (eds.): RRPR 2016. LNCS, vol. 10214. Springer, Cham (2017)Google Scholar
  10. 10.
    Kistler, M., et al.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)CrossRefGoogle Scholar
  11. 11.
    Merveille, O., et al.: Curvilinear structure analysis by ranking the orientation responses of path operators. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2017). doi: 10.1109/TPAMI.2017.2672972
  12. 12.
    Rammohan, E., et al.: Embolization of liver tumors: past, present and future. J. Radiol. 4(9), 405–412 (2012)Google Scholar
  13. 13.
    Netter, F.H.: Atlas of Human Anatomy. Saunders, Philadelphia (2014)Google Scholar
  14. 14.
    Research Institute against Digestive Cancer. IRCAD dataset. http://www.ircad.fr/research/3d-ircadb-01/
  15. 15.
    Rogers, D.F.: An Introduction to NURBS. Morgan Kaufmann, San Francisco (2001)Google Scholar
  16. 16.
    Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R.: 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz, J., Grimson, E., Mösges, R. (eds.) CVRMed/MRCAS -1997. LNCS, vol. 1205, pp. 213–222. Springer, Heidelberg (1997). doi: 10.1007/BFb0029240 CrossRefGoogle Scholar
  17. 17.
    Schwen, L.O., Preusser, T.: Analysis and algorithmic generation of hepatic vascular systems. Int. J. Hepatol. 2012, Article ID 357687 (2012)Google Scholar
  18. 18.
    Schwen, L.O., et al.: Spatio-temporal simulation of first pass drug perfusion in the liver. PLoS Comput. Biol. 10(3), e1003499 (2014)CrossRefGoogle Scholar
  19. 19.
    Siggers, J.H., et al.: Mathematical model of blood and interstitial flow and lymph production in the liver. Biomech. Model. Mechanobiol. 13(2), 363–378 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Sousa, L.S., et al.: Finite element simulation of blood flow in a carotid artery bifurcation. In: Congress on Numerical Methods in Engineering, Coimbra (2011)Google Scholar
  21. 21.
    Viceconti, M., et al.: In silico clinical trials: how computer simulation will transform the biomedical industry. Avicenna-ISCT, Avicenna Project (2016)Google Scholar
  22. 22.
    World Health Organization: Liver cancer. Estimated incidence, mortality, prevalence worldwide in 2012. http://globocan.iarc.fr/old/FactSheets/cancers/liver-new.asp

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Clermont Auvergne, SIGMA Clermont, CNRS, Institut PascalClermont-FerrandFrance
  2. 2.Centre Hospitalo-UniversitaireClermont-FerrandFrance

Personalised recommendations