Role of EBV in Classical Hodgkin Lymphoma

Part of the Molecular Pathology Library book series (MPLB)


Although 1964 heralded the discovery of the Epstein-Barr virus (EBV) in the biopsies of patients with Burkitt lymphoma (BL), it was some 21 years later before the virus would be identified in the tumour cells of a subset of patients with classical Hodgkin lymphoma (cHL). Emerging evidence suggests that the EBV-positive and EBV-negative forms of cHL are molecularly distinct; in EBV-positive cases, the virus can apparently substitute for the constitutive activation of cell signalling pathways caused by somatic genetic alterations in EBV-negative disease. Furthermore, although EBV-associated cHL presumably also arises as a consequence of a failure in the normal regulation of the virus-host balance in B cells, the mechanisms responsible are yet to be elucidated. Studies in BL have already revealed the importance of chronic immune stimuli as pathogenic cofactors. There is some evidence that chronic inflammatory processes also underpin the pathogenesis of EBV-associated cHL, although this is less well understood. This chapter will review the association between EBV and cHL and consider the evidence in support of a role for EBV and its latent proteins in disease development and progression.


Classical Hodgkin Lymphoma (CHL) Latent Membrane Protein LMP1 (LMP1) Epstein-Barr Virus Nuclear Antigen EBNA1 (EBNA1) Discoidin Domain Receptor (DDR1) Highly Active Antiretroviral Therapy (HAART) 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to Bloodwise for funding and to Eszter Nagy and Claire Shannon-Lowe for immunofluorescence staining.


  1. Agematsu K, Nagumo H, Shinozaki K, Hokibara S, Yasui K, Terada K et al (1998) Absence of IgD-CD27(+) memory B cell population in X-linked hyper-IgM syndrome. J Clin Invest 102:853–860PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aldinucci D, Celegato M, Casagrande N (2016) Microenvironmental interactions in classical Hodgkin lymphoma and their role in promoting tumor growth, immune escape and drug resistance. Cancer Lett 380:243–252PubMedCrossRefGoogle Scholar
  3. Anagnostopoulos I, Herbst H, Niedobitek G, Stein H (1989) Demonstration of monoclonal EBV genomes in Hodgkin’s disease and Ki-1-positive anaplastic large cell lymphoma by combined Southern blot and in situ hybridization. Blood 74:810–816PubMedGoogle Scholar
  4. Anderson LJ, Longnecker R (2009) Epstein-Barr virus latent membrane protein 2A exploits Notch1 to alter B-cell identity in vivo. Blood 113:108–116PubMedPubMedCentralCrossRefGoogle Scholar
  5. Anderton JA, Bose S, Vockerodt M, Vrzalikova K, Wei W, Kuo M et al (2011) The H3K27me3 demethylase, KDM6B, is induced by Epstein-Barr virus and over-expressed in Hodgkin’s lymphoma. Oncogene 30:2037–2043PubMedCrossRefGoogle Scholar
  6. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al (2015) PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med 372:311–319PubMedCrossRefGoogle Scholar
  7. Armstrong AA, Alexander FE, Cartwright R, Angus B, Krajewski AS, Wright DH et al (1998) Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. Leukemia 12:1272–1276PubMedCrossRefGoogle Scholar
  8. Babcock GJ, Decker LL, Volk M, Thorley-Lawson DA (1998) EBV persistence in memory B cells in vivo. Immunity 9:395–404PubMedCrossRefGoogle Scholar
  9. Babcock GJ, Hochberg D, Thorley-Lawson DA (2000) The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13:497–506PubMedCrossRefGoogle Scholar
  10. Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ et al (1984) DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310:207–211PubMedCrossRefGoogle Scholar
  11. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barros MH, Hassan R, Niedobitek G (2012) Tumor-associated macrophages in pediatric classical Hodgkin lymphoma: association with Epstein-Barr virus, lymphocyte subsets, and prognostic impact. Clin Cancer Res 18:3762–3771PubMedCrossRefGoogle Scholar
  13. Barros MH, Segges P, Vera-Lozada G, Hassan R, Niedobitek G (2015) Macrophage polarization reflects T cell composition of tumor microenvironment in pediatric classical Hodgkin lymphoma and has impact on survival. PLoS One 10:e0124531PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baumforth KR, Birgersdotter A, Reynolds GM, Wei W, Kapatai G, Flavell JR et al (2008) Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am J Pathol 173:195–204PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bechtel D, Kurth JJ, Unkel C, Küppers R (2005) Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106:4345–4350PubMedCrossRefGoogle Scholar
  16. Biggar RJ, Jaffe ES, Goedert JJ, Chaturvedi A, Pfeiffer R, Engels EA (2006) Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 108:3786–3791PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bohlius J, Schmidlin K, Boue F, Fatkenheuer G, May M, Caro-Murillo AM et al (2011) HIV-1-related Hodgkin lymphoma in the era of combination antiretroviral therapy: incidence and evolution of CD4(+) T-cell lymphocytes. Blood 117:6100–6108PubMedCrossRefGoogle Scholar
  18. Brauninger A, Schmitz R, Bechtel D, Renne C, Hansmann ML, Kuppers R (2006) Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer 118:1853–1861PubMedCrossRefGoogle Scholar
  19. Buri C, Korner M, Scharli P, Cefai D, Uguccioni M, Mueller C et al (2001) CC chemokines and the receptors CCR3 and CCR5 are differentially expressed in the nonneoplastic leukocytic infiltrates of Hodgkin disease. Blood 97:1543–1548PubMedCrossRefGoogle Scholar
  20. Cader FZ, Vockerodt M, Bose S, Nagy E, Brundler MA, Kearns P et al (2013) The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood 122:4237–4245PubMedCrossRefGoogle Scholar
  21. Cahir-McFarland ED, Carter K, Rosenwald A, Giltnane JM, Henrickson SE, Staudt LM et al (2004) Role of NF-kappa B in cell survival and transcription of latent membrane protein 1—expressing or Epstein-Barr virus latency III-infected cells. J Virol 78:4108–4119PubMedPubMedCentralCrossRefGoogle Scholar
  22. Caldwell RG, Wilson JB, Anderson SJ, Longnecker R (1998) Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9:405–411PubMedCrossRefGoogle Scholar
  23. Chaganti S, Bell AI, Pastor NB, Milner AE, Drayson M, Gordon J et al (2005) Epstein-Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood 106:4249–4252PubMedCrossRefGoogle Scholar
  24. Chaganti S, Ma CS, Bell AI, Croom-Carter D, Hislop AD, Tangye SG et al (2008) Epstein-Barr virus persistence in the absence of conventional memory B cells: IgM+IgD+CD27+ B cells harbor the virus in X-linked lymphoproliferative disease patients. Blood 112:672–679PubMedCrossRefGoogle Scholar
  25. Chang KL, Albujar PF, Chen YY, Johnson RM, Weiss LM (1993) High prevalence of Epstein-Barr virus in the Reed-Sternberg cells of Hodgkin’s disease occurring in Peru. Blood 81:496–501PubMedGoogle Scholar
  26. Chang RA, Miller SD, Longnecker R (2012) Epstein-Barr virus latent membrane protein 2A exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function. Sci Rep 2:353PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chetaille B, Bertucci F, Finetti P, Esterni B, Stamatoullas A, Picquenot JM et al (2009) Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood 113:2765–3775PubMedCrossRefGoogle Scholar
  28. Cheuk W, Chan AC, Chan JK, Lau GT, Chan VN, Yiu HH (2005) Metallic implant-associated lymphoma: a distinct subgroup of large B-cell lymphoma related to pyothorax-associated lymphoma? Am J Surg Pathol 29:832–836PubMedCrossRefGoogle Scholar
  29. Coates PJ, Slavin G, D’Ardenne AJ (1991) Persistence of Epstein-Barr virus in Reed-Sternberg cells throughout the course of Hodgkin’s disease. J Pathol 164:291–297PubMedCrossRefGoogle Scholar
  30. Connelly RR, Christine BW (1974) A cohort study of cancer following infectious mononucleosis. Cancer Res 34:1172–1178PubMedGoogle Scholar
  31. Copie-Bergman C, Niedobitek G, Mangham DC, Selves J, Baloch K, Diss TC et al (1997) Epstein-Barr virus in B-cell lymphomas associated with chronic suppurative inflammation. J Pathol 183:287–292PubMedCrossRefGoogle Scholar
  32. Crump C, Sundquist K, Sieh W, Winkleby MA, Sundquist J (2012a) Perinatal and family risk factors for Hodgkin lymphoma in childhood through young adulthood. Am J Epidemiol 176:1147–1158PubMedPubMedCentralCrossRefGoogle Scholar
  33. Crump C, Sundquist K, Sieh W, Winkleby MA, Sundquist J (2012b) Perinatal and family risk factors for non-Hodgkin lymphoma in early life: a Swedish national cohort study. J Natl Cancer Inst 104:923–930PubMedPubMedCentralCrossRefGoogle Scholar
  34. Doussis-Anagnostopoulou IA, Talks KL, Turley H, Debnam P, Tan DC, Mariatos G et al (2002) Vascular endothelial growth factor (VEGF) is expressed by neoplastic Hodgkin-Reed-Sternberg cells in Hodgkin’s disease. J Pathol 197:677–683PubMedCrossRefGoogle Scholar
  35. Dukers DF, Jaspars LH, Vos W, Oudejans JJ, Hayes D, Cillessen S et al (2000) Quantitative immunohistochemical analysis of cytokine profiles in Epstein-Barr virus-positive and -negative cases of Hodgkin’s disease. J Pathol 190:143–149PubMedCrossRefGoogle Scholar
  36. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205:498–506PubMedCrossRefGoogle Scholar
  37. Farrell K, Jarrett RF (2011) The molecular pathogenesis of Hodgkin lymphoma. Histopathology 58:15–25PubMedCrossRefGoogle Scholar
  38. Fischer M, Juremalm M, Olsson N, Backlin C, Sundstrom C, Nilsson K et al (2003) Expression of CCL5/RANTES by Hodgkin and Reed-Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int J Cancer 107:197–201PubMedCrossRefGoogle Scholar
  39. Flavell KJ, Biddulph JP, Powell JE, Parkes SE, Redfern D, Weinreb M et al (2001) South Asian ethnicity and material deprivation increase the risk of Epstein-Barr virus infection in childhood Hodgkin’s disease. Br J Cancer 85:350–356PubMedPubMedCentralCrossRefGoogle Scholar
  40. Flavell JR, Baumforth KR, Wood VH, Davies GL, Wei W, Reynolds GM et al (2008) Down-regulation of the TGF-beta target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111:292–301PubMedCrossRefGoogle Scholar
  41. Frappier L (2012a) Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Virus 4:1537–1547CrossRefGoogle Scholar
  42. Frappier L (2012b) EBNA1 and host factors in Epstein-Barr virus latent DNA replication. Curr Opin Virol 2:733–739PubMedCrossRefGoogle Scholar
  43. Frappier L (2012c) The Epstein-Barr virus EBNA1 protein. Scientifica (Cairo) 2012:438204Google Scholar
  44. Fukuda M, Longnecker R (2007) Epstein-Barr virus latent membrane protein 2A mediates transformation through constitutive activation of the Ras/PI3-K/Akt pathway. J Virol 81:9299–9306PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gires O, Zimber-Strobl U, Gonnella R, Ueffing M, Marschall G, Zeidler R et al (1997) Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J 16:6131–6140PubMedPubMedCentralCrossRefGoogle Scholar
  46. Glaser SL, Jarrett RF (1996) The epidemiology of Hodgkin’s disease. Baillieres Clin Haematol 9:401–416PubMedCrossRefGoogle Scholar
  47. Glaser SL, Lin RJ, Stewart SL, Ambinder RF, Jarrett RF, Brousset P et al (1997) Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer 70:375–382PubMedCrossRefGoogle Scholar
  48. Glaser SL, Clarke CA, Gulley ML, Craig FE, DiGiuseppe JA, Dorfman RF et al (2003) Population-based patterns of human immunodeficiency virus-related Hodgkin lymphoma in the Greater San Francisco Bay Area, 1988-1998. Cancer 98:300–309PubMedCrossRefGoogle Scholar
  49. Gotti D, Danesi M, Calabresi A, Ferraresi A, Albini L, Donato F et al (2013) Clinical characteristics, incidence, and risk factors of HIV-related Hodgkin lymphoma in the era of combination antiretroviral therapy. AIDS Patient Care STDs 27:259–265PubMedCrossRefGoogle Scholar
  50. Greaves P, Clear A, Owen A, Iqbal S, Lee A, Matthews J et al (2013) Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood 122:2856–2863PubMedPubMedCentralCrossRefGoogle Scholar
  51. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O’Donnell E et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–3277PubMedPubMedCentralCrossRefGoogle Scholar
  52. Green MR, Rodig S, Juszczynski P, Ouyang J, Sinha P, O’Donnell E et al (2012) Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin Cancer Res 18:1611–1618PubMedPubMedCentralCrossRefGoogle Scholar
  53. Heath E, Begue-Pastor N, Chaganti S, Croom-Carter D, Shannon-Lowe C, Kube D et al (2012) Epstein-Barr virus infection of naive B cells in vitro frequently selects clones with mutated immunoglobulin genotypes: implications for virus biology. PLoS Pathog 8:e1002697PubMedPubMedCentralCrossRefGoogle Scholar
  54. Henderson S, Rowe M, Gregory C, Croom-Carter D, Wang F, Longnecker R et al (1991) Induction of bcl-2 expression by Epstein-Barr virus latent membrane protein 1 protects infected B cells from programmed cell death. Cell 65:1107–1115PubMedCrossRefGoogle Scholar
  55. Hjalgrim H, Munksgaard L, Melbye M (2002) Epstein-Barr virus and Hodgkin’s lymphoma. Ugeskr Laeger 164:5924–5927PubMedGoogle Scholar
  56. Hjalgrim H, Ekstrom Smedby K, Rostgaard K, Molin D, Hamilton-Dutoit S, Chang ET et al (2007) Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res 67:2382–2388PubMedCrossRefGoogle Scholar
  57. Hjalgrim H, Rostgaard K, Johnson PC, Lake A, Shield L, Little AM et al (2010) HLA-A alleles and infectious mononucleosis suggest a critical role for cytotoxic T-cell response in EBV-related Hodgkin lymphoma. Proc Natl Acad Sci U S A 107:6400–6405PubMedPubMedCentralCrossRefGoogle Scholar
  58. Holtick U, Vockerodt M, Pinkert D, Schoof N, Stürzenhofecker B, Kussebi N et al (2005) STAT3 is essential for Hodgkin lymphoma cell proliferation and is a target of tyrphostin AG17 which confers sensitization for apoptosis. Leukemia 19:936–944PubMedCrossRefGoogle Scholar
  59. Jarrett RF, Gallagher A, Jones DB, Alexander FE, Krajewski AS, Kelsey A et al (1991) Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol 44:844–848PubMedPubMedCentralCrossRefGoogle Scholar
  60. Jundt F, Anagnostopoulos I, Bommert K, Emmerich F, Muller G, Foss HD et al (1999) Hodgkin/Reed-Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils. Blood 94:2065–2071PubMedGoogle Scholar
  61. Kerr BM, Lear AL, Rowe M, Croom-Carter D, Young LS, Rookes SM et al (1992) Three transcriptionally distinct forms of Epstein-Barr virus latency in somatic cell hybrids: cell phenotype dependence of virus promoter usage. Virology 187:189–201PubMedCrossRefGoogle Scholar
  62. Khanna R, Burrows SR, Nicholls J, Poulsen LM (1998) Identification of cytotoxic T cell epitopes within Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1): evidence for HLA A2 supertype-restricted immune recognition of EBV-infected cells by LMP1-specific cytotoxic T lymphocytes. Eur J Immunol 28:451–458PubMedCrossRefGoogle Scholar
  63. Kis LL, Takahara M, Nagy N, Klein G, Klein E (2006) Cytokine mediated induction of the major Epstein-Barr virus (EBV)-encoded transforming protein, LMP-1. Immunol Lett 104:83–88PubMedCrossRefGoogle Scholar
  64. Kis LL, Gerasimcik N, Salamon D, Persson EK, Nagy N, Klein G et al (2011) STAT6 signaling pathway activated by the cytokines IL-4 and IL-13 induces expression of the Epstein-Barr virus-encoded protein LMP-1 in absence of EBNA-2: implications for the type II EBV latent gene expression in Hodgkin lymphoma. Blood 117:165–174PubMedCrossRefGoogle Scholar
  65. Koh YW, Park C, Yoon DH, Suh C, Huh J (2014) CSF-1R expression in tumor-associated macrophages is associated with worse prognosis in classical Hodgkin lymphoma. Am J Clin Pathol 141:573–583PubMedCrossRefGoogle Scholar
  66. Korkolopoulou P, Thymara I, Kavantzas N, Vassilakopoulos TP, Angelopoulou MK, Kokoris SI et al (2005) Angiogenesis in Hodgkin’s lymphoma: a morphometric approach in 286 patients with prognostic implications. Leukemia 19:894–900PubMedCrossRefGoogle Scholar
  67. Kowalkowski MA, Mims MP, Amiran ES, Lulla P, Chiao EY (2013) Effect of immune reconstitution on the incidence of HIV-related Hodgkin lymphoma. PLoS One 8:e77409PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N (1998) Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A 95:11963–11968PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kurth J, Spieker T, Wustrow J, Strickler JG, Hansmann M-L, Rajewsky K et al (2000) EBV-infected B cells in infectious mononucleosis. Immunity 13:485–495PubMedCrossRefGoogle Scholar
  70. Kurth J, Hansmann ML, Rajewsky K, Kuppers R (2003) Epstein-Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci U S A 100:4730–4735PubMedPubMedCentralCrossRefGoogle Scholar
  71. Kushekhar K, van den Berg A, Nolte I, Hepkema B, Visser L, Diepstra A (2014) Genetic associations in classical Hodgkin lymphoma: a systematic review and insights into susceptibility mechanisms. Cancer Epidemiol Biomark Prev 23:2737–2747CrossRefGoogle Scholar
  72. Laichalk LL, Thorley-Lawson DA (2004) Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79:1296–1307CrossRefGoogle Scholar
  73. Lajoie V, Lemieux B, Sawan B, Lichtensztejn D, Lichtensztejn Z, Wellinger R et al (2015) LMP1 mediates multinuclearity through downregulation of shelterin proteins and formation of telomeric aggregates. Blood 125:2101–2110PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lam N, Sugden B (2003) CD40 and its viral mimic, LMP1: similar means to different ends. Cell Signal 15:9–16PubMedCrossRefGoogle Scholar
  75. Lee SP, Thomas WA, Murray RJ, Khanim F, Kaur S, Young LS et al (1993) HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2. J Virol 67:7428–7435PubMedPubMedCentralGoogle Scholar
  76. Lee SP, Constandinou CM, Thomas WA, Croom-Carter D, Blake NW, Murray PG et al (1998) Antigen presenting phenotype of Hodgkin Reed-Sternberg cells: analysis of the HLA class I processing pathway and the effects of interleukin-10 on Epstein-Barr virus-specific cytotoxic T-cell recognition. Blood 92:1020–1030PubMedGoogle Scholar
  77. Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG et al (2011) Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin’s lymphoma. J Virol 85:9568–9577PubMedPubMedCentralCrossRefGoogle Scholar
  78. Leonard S, Gordon N, Smith N, Rowe M, Murray PG, Woodman CB (2012) Arginine methyltransferases are regulated by Epstein-Barr virus in B cells and are differentially expressed in Hodgkin’s lymphoma. Pathogens 1:52–64PubMedPubMedCentralCrossRefGoogle Scholar
  79. Levine PHAD, Berard CW, Carbone PP, Waggoner DE, Malan L (1971) Elevated antibody titers to Epstein-Barr virus in Hodgkin’s disease. Cancer 7:416–421CrossRefGoogle Scholar
  80. Loong F, Chan AC, Ho BC, Chau YP, Lee HY, Cheuk W et al (2010) Diffuse large B-cell lymphoma associated with chronic inflammation as an incidental finding and new clinical scenarios. Mod Pathol 23:493–501PubMedCrossRefGoogle Scholar
  81. Ma CS, Pittaluga S, Avery DT, Hare NJ, Maric I, Klion AD et al (2006) Selective generation of functional somatically mutated IgM+CD27+, but not Ig isotype-switched, memory B cells in X-linked lymphoproliferative disease. J Clin Invest 116:322–333PubMedPubMedCentralCrossRefGoogle Scholar
  82. Ma SD, Tsai MH, Romero-Masters JC, Ranheim EA, Huebner SM, Bristol J et al (2017) LMP1 and LMP2A collaborate to promote Epstein-Barr virus (EBV)-induced B cell lymphomas in a cord blood-humanized mouse model but are not essential. J Virol. pii: JVI.01928-16. doi:
  83. Mack TM, Cozen W, Shibata DK, Weiss LM, Nathwani BN, Hernandez AM et al (1995) Concordance for Hodgkin’s disease in identical twins suggesting genetic susceptibility to the young-adult form of the disease. N Engl J Med 332:413–418PubMedCrossRefGoogle Scholar
  84. Mainou-Fowler T, Angus B, Miller S, Proctor SJ, Taylor PR, Wood KM (2006) Micro-vessel density and the expression of vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PdEGF) in classical Hodgkin lymphoma (HL). Leuk Lymphoma 47:223–230PubMedCrossRefGoogle Scholar
  85. Mancao C, Altmann M, Jungnickel B, Hammerschmidt W (2005) Rescue of “crippled” germinal center B cells from apoptosis by Epstein-Barr virus. Blood 106:4339–4343PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mandelbaum J, Bhagat G, Tang H, Mo T, Brahmachary M, Shen Q et al (2010) BLIMP1 is a tumor suppressor gene frequently disrupted in activated B cell-like diffuse large B cell lymphoma. Cancer Cell 18:568–579PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mantovani A, Schioppa T, Porta C, Allavena P, Sica A (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322PubMedCrossRefGoogle Scholar
  88. Martin KA, Lupey LN, Tempera I (2016) Epstein-Barr virus oncoprotein LMP1 mediates epigenetic changes in host gene expression through PARP1. J Virol 90:8520–8530PubMedPubMedCentralCrossRefGoogle Scholar
  89. McClain KL (2014) Why do T cells cause so much trouble? Blood 123:1978PubMedCrossRefGoogle Scholar
  90. Merchant M, Swart R, Katzman RB, Ikeda M, Ikeda A, Longnecker R et al (2001) The effects of the Epstein-Barr virus latent membrane protein 2A on B cell function. Int Rev Immunol 20:805–835PubMedCrossRefGoogle Scholar
  91. Mohamed G, Vrzalikova K, Cader FZ, Vockerodt M, Nagy E, Flodr P et al (2014) Epstein-Barr virus, the germinal centre and the development of Hodgkin’s lymphoma. J Gen Virol 95:1861–1869PubMedCrossRefGoogle Scholar
  92. Montgomery ND, WBt C, Johnson S, Yuan J, Gulley ML, Mathews SP et al (2016) Karyotypic abnormalities associated with Epstein-Barr virus status in classical Hodgkin lymphoma. Cancer Genet 209:408–416PubMedCrossRefGoogle Scholar
  93. Morales O, Mrizak D, Francois V, Mustapha R, Miroux C, Depil S et al (2014) Epstein-Barr virus infection induces an increase of T regulatory type 1 cells in Hodgkin lymphoma patients. Br J Haematol 166:875–890PubMedCrossRefGoogle Scholar
  94. Motsch N, Pfuhl T, Mrazek J, Barth S, Grasser FA (2007) Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 4:131–137PubMedCrossRefGoogle Scholar
  95. Mueller N, Evans A, Harris NL, Comstock GW, Jellum E, Magnus K et al (1989) Hodgkin’s disease and Epstein-Barr virus. Altered antibody pattern before diagnosis. N Engl J Med 20:689–695CrossRefGoogle Scholar
  96. Muenst S, Hoeller S, Dirnhofer S, Tzankov A (2009) Increased programmed death-1+ tumor-infiltrating lymphocytes in classical Hodgkin lymphoma substantiate reduced overall survival. Hum Pathol 40:1715–1722PubMedCrossRefGoogle Scholar
  97. Murdoch C, Muthana M, Coffelt SB, Lewis CE (2008) The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8:618–631PubMedCrossRefGoogle Scholar
  98. Murray PG, Constandinou CM, Crocker J, Young LS, Ambinder RF (1998) Analysis of major histocompatibility complex class I, TAP expression, and LMP2 epitope sequence in Epstein-Barr virus-positive Hodgkin’s disease. Blood 92:2477–2483PubMedGoogle Scholar
  99. Niens M, van den Berg A, Diepstra A, Nolte IM, van der Steege G, Gallagher A et al (2006) The human leukocyte antigen class I region is associated with EBV-positive Hodgkin’s lymphoma: HLA-A and HLA complex group 9 are putative candidate genes. Cancer Epidemiol Biomark Prev 15:2280–2284CrossRefGoogle Scholar
  100. Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M et al (2007) HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood 110:3310–3315PubMedCrossRefGoogle Scholar
  101. Oudejans JJ, Jiwa NM, Kummer JA, Horstman A, Vos W, Baak JP et al (1996) Analysis of major histocompatibility complex class I expression on Reed-Sternberg cells in relation to the cytotoxic T-cell response in Epstein-Barr virus-positive and -negative Hodgkin’s disease. Blood 87:3844–3851PubMedGoogle Scholar
  102. Oudejans JJ, Jiwa NM, Kummer JA, Ossenkoppele GJ, van Heerde P, Baars JW et al (1997) Activated cytotoxic T cells as prognostic marker in Hodgkin’s disease. Blood 89:1376–1382PubMedGoogle Scholar
  103. Panico L, Ronconi F, Lepore M, Tenneriello V, Cantore N, Dell’Angelo AC et al (2013) Prognostic role of tumor-associated macrophages and angiogenesis in classical Hodgkin lymphoma. Leuk Lymphoma 54:2418–2425PubMedCrossRefGoogle Scholar
  104. Pasqualucci L, Compagno M, Houldsworth J, Monti S, Grunn A, Nandula SV et al (2006) Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma. J Exp Med 203:311–317PubMedPubMedCentralCrossRefGoogle Scholar
  105. Pfeffer S (2004) Identification of virus-encoded microRNAs. Science 304:734–736PubMedCrossRefGoogle Scholar
  106. Poppema S, van Imhoff G, Torensma R, Smit J (1985) Lymphadenopathy morphologically consistent with Hodgkin’s disease associated with Epstein-Barr virus infection. Am J Clin Pathol 84:385–390PubMedCrossRefGoogle Scholar
  107. Portis T, Longnecker R (2003) Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development. J Virol 77:105–114PubMedPubMedCentralCrossRefGoogle Scholar
  108. Portis T, Longnecker R (2004) Epstein-Barr virus (EBV) LMP2A alters normal transcriptional regulation following B-cell receptor activation. Virology 318:524–533PubMedCrossRefGoogle Scholar
  109. Portis T, Dyck P, Longnecker R (2003) Epstein-Barr virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed-Sternberg cells of Hodgkin lymphoma. Blood 102:4166–4178PubMedCrossRefGoogle Scholar
  110. Price S, Shaw PA, Seitz A, Joshi G, Davis J, Niemela JE et al (2014) Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 123:1989–1999PubMedPubMedCentralCrossRefGoogle Scholar
  111. Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y et al (2015) Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125:1061–1072PubMedCrossRefGoogle Scholar
  112. Renne C, Hinsch N, Willenbrock K, Fuchs M, Klapper W, Engert A et al (2007) The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int J Cancer 120:2504–2509PubMedCrossRefGoogle Scholar
  113. Reusch JA, Nawandar DM, Wright KL, Kenney SC, Mertz JE (2015) Cellular differentiation regulator BLIMP1 induces Epstein-Barr virus lytic reactivation in epithelial and B cells by activating transcription from both the R and Z promoters. J Virol 89:1731–1743PubMedCrossRefGoogle Scholar
  114. Rickinson AB, Moss DJ (1997) Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol 15:405–431PubMedCrossRefGoogle Scholar
  115. Rickinson AB, Rowe M, Hart IJ, Yao QY, Henderson LE, Rabin H et al (1984) T-cell-mediated regression of “spontaneous” and of Epstein-Barr virus-induced B-cell transformation in vitro: studies with cyclosporin A. Cell Immunol 87:646–658PubMedCrossRefGoogle Scholar
  116. Rosdahl N, Larsen SO, Clemmesen J (1974) Hodgkin’s disease in patients with previous infectious mononucleosis: 30 years’ experience. BMJ 2:253–256PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rowe M, Fitzsimmons L, Bell AI (2014a) Epstein-Barr virus and Burkitt lymphoma. Chin J Cancer 33:609–619PubMedPubMedCentralGoogle Scholar
  118. Rowe M, Raithatha S, Shannon-Lowe C (2014b) Counteracting effects of cellular Notch and Epstein-Barr virus EBNA2: implications for stromal effects on virus-host interactions. J Virol 88:12065–12076PubMedPubMedCentralCrossRefGoogle Scholar
  119. Sanchez-Aguilera A, Montalban C, de la Cueva P, Sanchez-Verde L, Morente MM, Garcia-Cosio M et al (2006) Tumor microenvironment and mitotic checkpoint are key factors in the outcome of classic Hodgkin lymphoma. Blood 108:662–668PubMedCrossRefGoogle Scholar
  120. Sanchez-Gonzalez B, Garcia M, Montserrat F, Sanchez M, Angona A, Solano A et al (2013) Diffuse large B-cell lymphoma associated with chronic inflammation in metallic implant. J Clin Pathol 31:e148–e151Google Scholar
  121. Schumacher MA, Schmitz R, Brune V, Tiacci E, Doring C, Hansmann ML et al (2010) Mutations in the genes coding for the NF-kappaB regulating factors IkappaBalpha and A20 are uncommon in nodular lymphocyte-predominant Hodgkin’s lymphoma. Haematologica 95:153–157PubMedCrossRefGoogle Scholar
  122. Skinnider BF, Mak TW (2002) The role of cytokines in classical Hodgkin lymphoma. Blood 99:4283–4297PubMedCrossRefGoogle Scholar
  123. Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, von Bonin F, Kapp U et al (2001) Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 97:250–255PubMedCrossRefGoogle Scholar
  124. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al (2010) Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N Engl J Med 362:875–885PubMedPubMedCentralCrossRefGoogle Scholar
  125. Steidl C, Farinha P, Gascoyne RD (2011a) Macrophages predict treatment outcome in Hodgkin’s lymphoma. Haematologica 96:186–189PubMedPubMedCentralCrossRefGoogle Scholar
  126. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al (2011b) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381PubMedPubMedCentralCrossRefGoogle Scholar
  127. Sueur C, Lupo J, Germi R, Magnat N, Prevost S, Boyer V et al (2016) Characterization of Epstein-Barr virus LMP1 deletion variants by next-generation sequencing in HIV-associated Hodgkin lymphoma (French ANRS CO16 LYMPHOVIR cohort). J Clin Virol 82:S89–S90CrossRefGoogle Scholar
  128. Tan KL, Scott DW, Hong F, Kahl BS, Fisher RI, Bartlett NL et al (2012) Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 intergroup trial. Blood 120:3280–3287PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vockerodt M, Morgan SL, Kuo M, Wei W, Chukwuma MB, Arrand JR et al (2008) The Epstein-Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin’s Reed-Sternberg-like phenotype. J Pathol 216:83–92PubMedCrossRefGoogle Scholar
  130. Vockerodt M, Wei W, Nagy E, Prouzova Z, Schrader A, Kube D et al (2013) Suppression of the LMP2A target gene, EGR-1, protects Hodgkin’s lymphoma cells from entry to the EBV lytic cycle. J Pathol 230:399–409PubMedCrossRefGoogle Scholar
  131. Vrazo AC, Chauchard M, Raab-Traub N, Longnecker R (2012) Epstein-Barr virus LMP2A reduces hyperactivation induced by LMP1 to restore normal B cell phenotype in transgenic mice. PLoS Pathog 8:e1002662PubMedPubMedCentralCrossRefGoogle Scholar
  132. Vrzalikova K, Vockerodt M, Leonard S, Bell A, Wei W, Schrader A et al (2011) Down-regulation of BLIMP1alpha by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood 117:5907–5917PubMedPubMedCentralCrossRefGoogle Scholar
  133. Vrzalikova K, Leonard S, Fan Y, Bell A, Vockerodt M, Flodr P et al (2012) Hypomethylation and over-expression of the beta isoform of BLIMP1 is induced by Epstein-Barr virus infection of B cells; potential implications for the pathogenesis of EBV-associated lymphomas. Pathogens 1:83–101PubMedPubMedCentralCrossRefGoogle Scholar
  134. Weinreb M, Day PJ, Niggli F, Green EK, Nyong’o AO, Othieno-Abinya NA et al (1996) The consistent association between Epstein-Barr virus and Hodgkin’s disease in children in Kenya. Blood 87:3828–3836PubMedGoogle Scholar
  135. Weiss LM, Strickler JG, Warnke RA, Purtilo DT, Sklar J (1987) Epstein-Barr viral DNA in tissues of Hodgkin’s disease. Am J Pathol 129:86–91PubMedPubMedCentralGoogle Scholar
  136. Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein–Barr viral genomes in Reed–Sternberg cells of Hodgkin’s disease. N Engl J Med 320:502–506PubMedCrossRefGoogle Scholar
  137. Westhoff Smith D, Sugden B (2013) Potential cellular functions of Epstein-Barr nuclear antigen 1 (EBNA1) of Epstein-Barr virus. Virus 5:226–240CrossRefGoogle Scholar
  138. Wood VH, O’Neil JD, Wei W, Stewart SE, Dawson CW, Young LS (2007) Epstein-Barr virus-encoded EBNA1 regulates cellular gene transcription and modulates the STAT1 and TGFbeta signaling pathways. Oncogene 26:4135–4147PubMedCrossRefGoogle Scholar
  139. Wu T-C, Mann RB, Charache P, Hayward SD, Staal S, Lambe BC et al (1990) Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer 46:801–804PubMedCrossRefGoogle Scholar
  140. Wu R, Sattarzadeh A, Rutgers B, Diepstra A, van den Berg A, Visser L (2016) The microenvironment of classical Hodgkin lymphoma: heterogeneity by Epstein-Barr virus presence and location within the tumor. Blood Cancer J 6:e417PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yamamoto R, Nishikori M, Kitawaki T, Sakai T, Hishizawa M, Tashima M et al (2008) PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111:3220–3224PubMedCrossRefGoogle Scholar
  142. Young LS, Yap LF, Murray PG (2016) Epstein-Barr virus: more than 50 years old and still providing surprises. Nat Rev Cancer 16:789–802PubMedCrossRefGoogle Scholar
  143. Zhang B, Kracker S, Yasuda T, Casola S, Vanneman M, Homig-Holzel C et al (2012) Immune surveillance and therapy of lymphomas driven by Epstein-Barr virus protein LMP1 in a mouse model. Cell 148:739–751PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK

Personalised recommendations