Skip to main content

Epigenetic Regulations in the Pathogenesis of HCC and the Clinical Application

  • Chapter
  • First Online:
  • 1034 Accesses

Part of the book series: Molecular Pathology Library ((MPLB))

Abstract

Hepatocellular carcinoma (HCC) arises from hepatocytes, which constitute 70–80% of all liver cells, and is the most frequent liver malignancy, causing more than 80% of liver cancer cases globally. HCC is rarely associated with the inheritance of familial genetic mutations [70, 129]; this explains in part why pediatric HCC cases are so rare. In fact most HCC cases are diagnosed later in life and are caused by prolonged exposure to environmental factors known to damage the liver progressively over time. Two of the major risk factors associated with the development of HCC include chronic infection with hepatitis B virus (HBV) and chronic infection with hepatitis C virus (HCV); these viruses are detectable in approximately 80% of all HCC cases [108, 123, 132]. Another contributing factor driving the development of viral HCC is the accidental consumption of aflatoxin B1 (AFB1). The toxin is found in contaminated food stores containing Aspergillus fungal species. Heavy chronic cigarette smoking has also recently emerged as a contributory factor [21]. Apart from the hepatitis viruses, the other major independent risk factor for the development of HCC is chronic over consumption of alcohol [36, 90]. Another emerging risk factor is overnutrition. Consumption of excess calories routinely can lead to nonalcoholic fatty liver disease (NAFLD). NAFLD can progress to nonalcoholic steatohepatitis (NASH) which may then further develop into HCC. HCC caused by overnutrition is also linked to obesity and diabetes [120].

This is a preview of subscription content, log in via an institution.

References

  1. Abu-Amara M, Feld JJ. Does antiviral therapy for chronic hepatitis B reduce the risk of hepatocellular carcinoma? Semin Liver Dis. 2013;33(2):157–66. https://doi.org/10.1055/s-0033-1345719.

    Article  CAS  PubMed  Google Scholar 

  2. Adami HO, Chow WH, Nyrén O, Berne C, Linet MS, Ekbom A, et al. Excess risk of primary liver cancer in patients with diabetes mellitus. J Natl Cancer Inst. 1996;88(20):1472–7.

    Article  CAS  PubMed  Google Scholar 

  3. Ambade A, Satishchandran A, Szabo G. Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and miR-122-mediated HIF-1α activation. Sci Rep. 2016;6:21340. https://doi.org/10.1038/srep21340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Antequera F, Bird A. CpG islands. EXS. 1993;64:169–85.

    CAS  PubMed  Google Scholar 

  5. Arora A. MicroRNA targets: potential candidates for indirect regulation by drugs. Pharmacogenet Genomics. 2015;25(3):107–25. https://doi.org/10.1097/FPC.0000000000000111.

    Article  CAS  PubMed  Google Scholar 

  6. Augello C, Vaira V, Caruso L, Destro A, Maggioni M, Park YN, et al. MicroRNA profiling of hepatocarcinogenesis identifies C19MC cluster as a novel prognostic biomarker in hepatocellular carcinoma. Liver Int. 2012;32(5):772–82. https://doi.org/10.1111/j.1478-3231.2012.02795.x.

    Article  CAS  PubMed  Google Scholar 

  7. Bandyopadhyay S, Friedman RC, Marquez RT, Keck K, Kong B, Icardi MS, et al. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR-29: miR-29 overexpression reduces hepatitis C viral abundance in culture. J Infect Dis. 2011;203(12):1753–62. https://doi.org/10.1093/infdis/jir186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bankwitz D, Steinmann E, Bitzegeio J, Ciesek S, Friesland M, Herrmann E, et al. Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes. J Virol. 2010;84(11):5751–63. https://doi.org/10.1128/JVI.02200-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33. https://doi.org/10.1016/j.cell.2009.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4):952–64. https://doi.org/10.1016/j.jhep.2011.08.025.

    Article  CAS  PubMed  Google Scholar 

  11. Benedicto I, Molina-Jiménez F, Bartosch B, Cosset FL, Lavillette D, Prieto J, et al. The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol. 2009;83(16):8012–20. https://doi.org/10.1128/JVI.00038-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benegiamo G, Vinciguerra M, Mazzoccoli G, Piepoli A, Andriulli A, Pazienza V. DNA methyltransferases 1 and 3b expression in Huh-7 cells expressing HCV core protein of different genotypes. Dig Dis Sci. 2012;57(6):1598–603. https://doi.org/10.1007/s10620-012-2160-1.

    Article  CAS  PubMed  Google Scholar 

  13. Blonski W, Kotlyar DS, Forde KA. Non-viral causes of hepatocellular carcinoma. World J Gastroenterol. 2010;16(29):3603–15.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bosia C, Osella M, Baroudi ME, Corà D, Caselle M. Gene autoregulation via intronic microRNAs and its functions. BMC Syst Biol. 2012;6:131. https://doi.org/10.1186/1752-0509-6-131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bruix J, Sherman M, Practice Guidelines Committee, American Association for the Study of Liver Diseases. Management of hepatocellular carcinoma. Hepatology. 2005;42(5):1208–36. https://doi.org/10.1002/hep.20933.

    Article  PubMed  Google Scholar 

  16. Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, et al. microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol. 2010;6:402. https://doi.org/10.1038/msb.2010.58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348(17):1625–38. https://doi.org/10.1056/NEJMoa021423.

    Article  PubMed  Google Scholar 

  18. Calvisi DF, Simile MM, Ladu S, Pellegrino R, De Murtas V, Pinna F, et al. Altered methionine metabolism and global DNA methylation in liver cancer: relationship with genomic instability and prognosis. Int J Cancer. 2007;121(11):2410–20. https://doi.org/10.1002/ijc.22940.

    Article  CAS  PubMed  Google Scholar 

  19. Chakraborty C, Doss CG, Bandyopadhyay S, Agoramoorthy G. Influence of miRNA in insulin signaling pathway and insulin resistance: micro-molecules with a major role in type-2 diabetes. Wiley Interdiscip Rev RNA. 2014;5(5):697–712. https://doi.org/10.1002/wrna.1240.

    CAS  PubMed  Google Scholar 

  20. Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, et al. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology. 2012;142(7):1592–609. https://doi.org/10.1053/j.gastro.2012.04.001.

    Article  PubMed  Google Scholar 

  21. Chen CJ, Yu MW, Liaw YF. Epidemiological characteristics and risk factors of hepatocellular carcinoma. J Gastroenterol Hepatol. 1997;12(9–10):S294–308.

    Article  CAS  PubMed  Google Scholar 

  22. Chen HP, Zhao YT, Zhao TC. Histone deacetylases and mechanisms of regulation of gene expression. Crit Rev Oncog. 2015b;20(1–2):35–47.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen L, Hou J, Ye L, Chen Y, Cui J, Tian W, et al. MicroRNA-143 regulates adipogenesis by modulating the MAP2K5-ERK5 signaling. Sci Rep. 2014;4:3819. https://doi.org/10.1038/srep03819.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chen WC, Wang SY, Chiu CC, Tseng CK, Lin CK, Wang HC, Lee JC. Lucidone suppresses hepatitis C virus replication by Nrf2-mediated heme oxygenase-1 induction. Antimicrob Agents Chemother. 2013;57(3):1180–91. https://doi.org/10.1128/AAC.02053-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen WN, Chen JY, Lin WS, Lin JY, Lin X. Hepatitis B doubly spliced protein, generated by a 2.2 kb doubly spliced hepatitis B virus RNA, is a pleiotropic activator protein mediating its effects via activator protein-1- and CCAAT/enhancer-binding protein-binding sites. J Gen Virol. 2010;91(Pt 10):2592–600. https://doi.org/10.1099/vir.0.022517-0.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Dong X, Yu D, Wang X. Serum miR-96 is a promising biomarker for hepatocellular carcinoma in patients with chronic hepatitis B virus infection. Int J Clin Exp Med. 2015a;8(10):18462–8.

    PubMed  PubMed Central  Google Scholar 

  27. Cheng H, Liu C, Jiang J, Luo G, Lu Y, Jin K, et al. Analysis of ctDNA to predict prognosis and monitor treatment responses in metastatic pancreatic cancer patients. Int J Cancer. 2017;140(10):2344–50. https://doi.org/10.1002/ijc.30650.

    Article  CAS  PubMed  Google Scholar 

  28. Cheng M, Si Y, Niu Y, Liu X, Li X, Zhao J, et al. High-throughput profiling of alpha interferon- and interleukin-28B-regulated microRNAs and identification of let-7s with anti-hepatitis C virus activity by targeting IGF2BP1. J Virol. 2013;87(17):9707–18. https://doi.org/10.1128/JVI.00802-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989;244(4902):359–62.

    Article  CAS  PubMed  Google Scholar 

  30. Christian P, Su Q. MicroRNA regulation of mitochondrial and ER stress signaling pathways: implications for lipoprotein metabolism in metabolic syndrome. Am J Physiol Endocrinol Metab. 2014;307(9):E729–37. https://doi.org/10.1152/ajpendo.00194.2014.

    Article  CAS  PubMed  Google Scholar 

  31. Clark JM. The epidemiology of nonalcoholic fatty liver disease in adults. J Clin Gastroenterol. 2006;40(Suppl 1):S5–10. https://doi.org/10.1097/01.mcg.0000168638.84840.ff.

    PubMed  Google Scholar 

  32. Clark SJ, Harrison J, Frommer M. CpNpG methylation in mammalian cells. Nat Genet. 1995;10(1):20–7. https://doi.org/10.1038/ng0595-20.

    Article  CAS  PubMed  Google Scholar 

  33. Dao Thi VL, Dreux M, Cosset FL. Scavenger receptor class B type I and the hypervariable region-1 of hepatitis C virus in cell entry and neutralisation. Expert Rev Mol Med. 2011;13:e13. https://doi.org/10.1017/S1462399411001785.

    Article  PubMed  CAS  Google Scholar 

  34. Dao Thi VL, Granier C, Zeisel MB, Guérin M, Mancip J, Granio O, et al. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. J Biol Chem. 2012;287(37):31242–57. https://doi.org/10.1074/jbc.M112.365924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deng JH, Deng P, Lin SL, Ying SY. Gene silencing in vitro and in vivo using intronic microRNAs. Methods Mol Biol. 2015;1218:321–40. https://doi.org/10.1007/978-1-4939-1538-5_20.

    Article  CAS  PubMed  Google Scholar 

  36. Ding J, Li M, Wan X, Jin X, Chen S, Yu C, Li Y. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep. 2015;5:13729. https://doi.org/10.1038/srep13729.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Donato F, Tagger A, Gelatti U, Parrinello G, Boffetta P, Albertini A, et al. Alcohol and hepatocellular carcinoma: the effect of lifetime intake and hepatitis virus infections in men and women. Am J Epidemiol. 2002;155(4):323–31.

    Article  CAS  PubMed  Google Scholar 

  38. Dong H, Wang C, Lu S, Yu C, Huang L, Feng W, et al. A panel of four decreased serum microRNAs as a novel biomarker for early Parkinson’s disease. Biomarkers. 2016;21(2):129–37. https://doi.org/10.3109/1354750X.2015.1118544.

    Article  CAS  PubMed  Google Scholar 

  39. Dou CY, Fan YC, Cao CJ, Yang Y, Wang K. Sera DNA methylation of CDH1, DNMT3b and ESR1 promoters as biomarker for the early diagnosis of hepatitis B virus-related hepatocellular carcinoma. Dig Dis Sci. 2016;61(4):1130–8. https://doi.org/10.1007/s10620-015-3975-3.

    Article  CAS  PubMed  Google Scholar 

  40. Dreux M, Dao Thi VL, Fresquet J, Guérin M, Julia Z, Verney G, et al. Receptor complementation and mutagenesis reveal SR-BI as an essential HCV entry factor and functionally imply its intra- and extra-cellular domains. PLoS Pathog. 2009;5(2):e1000310. https://doi.org/10.1371/journal.ppat.1000310.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. El-Serag HB, Hampel H, Javadi F. The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol. 2006;4(3):369–80. https://doi.org/10.1016/j.cgh.2005.12.007.

    Article  PubMed  Google Scholar 

  42. Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol. 2010;50:1–20. https://doi.org/10.1007/978-3-642-03103-8_1.

    Article  CAS  PubMed  Google Scholar 

  43. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43(2 Suppl 1):S99–S112. https://doi.org/10.1002/hep.20973.

    Article  CAS  PubMed  Google Scholar 

  44. Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic implications. Gut Liver. 2012;6(2):149–71. https://doi.org/10.5009/gnl.2012.6.2.149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gao P, Wong CC, Tung EK, Lee JM, Wong CM, Ng IO. Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. J Hepatol. 2011;54(6):1177–84. https://doi.org/10.1016/j.jhep.2010.09.023.

    Article  CAS  PubMed  Google Scholar 

  46. Gardiner AS, Gutierrez HL, Luo L, Davies S, Savage DD, Bakhireva LN, Perrone-Bizzozero NI. Alcohol use during pregnancy is associated with specific alterations in MicroRNA levels in maternal serum. Alcohol Clin Exp Res. 2016;40(4):826–37. https://doi.org/10.1111/acer.13026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM, Sorenson GD. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17(1):89–97.

    Article  CAS  PubMed  Google Scholar 

  48. Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, et al. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci U S A. 2009;106(33):13770–4. https://doi.org/10.1073/pnas.0906920106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gottwein JM, Scheel TK, Jensen TB, Lademann JB, Prentoe JC, Knudsen ML, et al. Development and characterization of hepatitis C virus genotype 1-7 cell culture systems: role of CD81 and scavenger receptor class B type I and effect of antiviral drugs. Hepatology. 2009;49(2):364–77. https://doi.org/10.1002/hep.22673.

    Article  CAS  PubMed  Google Scholar 

  50. Gouttenoire J, Penin F, Moradpour D. Hepatitis C virus nonstructural protein 4B: a journey into unexplored territory. Rev Med Virol. 2010;20(2):117–29. https://doi.org/10.1002/rmv.640.

    Article  CAS  PubMed  Google Scholar 

  51. Haider DG, Schindler K, Schaller G, Prager G, Wolzt M, Ludvik B. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91(4):1578–81. https://doi.org/10.1210/jc.2005-2248.

    Article  CAS  PubMed  Google Scholar 

  52. Haybaeck J, Zeller N, Heikenwalder M. The parallel universe: microRNAs and their role in chronic hepatitis, liver tissue damage and hepatocarcinogenesis. Swiss Med Wkly. 2011;141:w13287. https://doi.org/10.4414/smw.2011.13287.

    PubMed  Google Scholar 

  53. He C, Xu J, Zhang J, Xie D, Ye H, Xiao Z, Cai M, Xu K, Zeng Y, Li H, Wang J. High expression of trimethylated histone H3 lysine 4 is associated with poor prognosis in hepatocellular carcinoma. Hum. Pathol. 2012;43(9):1425–35. https://doi.org/10.1016/j.humpath.2011.11.003; Epub 2012 Mar 9.

    Article  CAS  PubMed  Google Scholar 

  54. Hechtman JF, Beasley MB, Kinoshita Y, Ko HM, Hao K, Burstein DE. Promyelocytic leukemia zinc finger and histone H1.5 differentially stain low- and high-grade pulmonary neuroendocrine tumors: a pilot immunohistochemical study. Hum Pathol. 2013;44(7):1400–5. https://doi.org/10.1016/j.humpath.2012.11.014.

    Article  CAS  PubMed  Google Scholar 

  55. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C, et al. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res. 2014;16(4):421. https://doi.org/10.1186/s13058-014-0421-y.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Herath NI, Leggett BA, MacDonald GA. Review of genetic and epigenetic alterations in hepatocarcinogenesis. J Gastroenterol Hepatol. 2006;21(1 Pt 1):15–21. https://doi.org/10.1111/j.1440-1746.2005.04043.x.

    Article  CAS  PubMed  Google Scholar 

  57. Hernandez-Vargas H, Lambert MP, Le Calvez-Kelm F, Gouysse G, McKay-Chopin S, Tavtigian SV, et al. Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors. PLoS One. 2010;5(3):e9749. https://doi.org/10.1371/journal.pone.0009749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hlady RA, Tiedemann RL, Puszyk W, Zendejas I, Roberts LR, Choi JH, et al. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget. 2014;5(19):9425–43. 10.18632/oncotarget.2444.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Huang S, He X. The role of microRNAs in liver cancer progression. Br J Cancer. 2011;104(2):235–40. https://doi.org/10.1038/sj.bjc.6606010.

    Article  CAS  PubMed  Google Scholar 

  60. Ikeda M, Zhang ZW, Srianujata S, Hussamin N, Banjong O, Chitchumroonchokchai C, et al. Prevalence of hepatitis B and C virus infection among working women in Bangkok. Southeast Asian J Trop Med Public Health. 1998;29(3):469–74.

    CAS  PubMed  Google Scholar 

  61. Ishida H, Tatsumi T, Hosui A, Nawa T, Kodama T, Shimizu S, et al. Alterations in microRNA expression profile in HCV-infected hepatoma cells: involvement of miR-491 in regulation of HCV replication via the PI3 kinase/Akt pathway. Biochem Biophys Res Commun. 2011;412(1):92–7. https://doi.org/10.1016/j.bbrc.2011.07.049.

    Article  CAS  PubMed  Google Scholar 

  62. Itano O, Ueda M, Kikuchi K, Hashimoto O, Hayatsu S, Kawaguchi M, et al. Correlation of postoperative recurrence in hepatocellular carcinoma with demethylation of repetitive sequences. Oncogene. 2002;21(5):789–97. https://doi.org/10.1038/sj.onc.1205124.

    Article  CAS  PubMed  Google Scholar 

  63. Jiang J, Wu X, Tang H, Luo G. Apolipoprotein E mediates attachment of clinical hepatitis C virus to hepatocytes by binding to cell surface heparan sulfate proteoglycan receptors. PLoS One. 2013;8(7):e67982. https://doi.org/10.1371/journal.pone.0067982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang W, Liu J, Dai Y, Zhou N, Ji C, Li X. MiR-146b attenuates high-fat diet-induced non-alcoholic steatohepatitis in mice. J. Gastroenterol. Hepatol. 2015;30(5):933–43. https://doi.org/10.1111/jgh.12878.

    Article  CAS  PubMed  Google Scholar 

  65. Jin B, Robertson KD. DNA methyltransferases, DNA damage repair, and cancer. Adv Exp Med Biol. 2013;754:3–29. https://doi.org/10.1007/978-1-4419-9967-2_1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jopling CL. Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans. 2008;36(Pt 6):1220–3. https://doi.org/10.1042/BST0361220.

    Article  CAS  PubMed  Google Scholar 

  67. Jopling CL, Norman KL, Sarnow P. Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol. 2006;71:369–76. https://doi.org/10.1101/sqb.2006.71.022.

    Article  CAS  PubMed  Google Scholar 

  68. Kałużna EM. MicroRNA-155 and microRNA-196b: promising biomarkers in hepatitis C virus infection? Rev Med Virol. 2014;24(3):169–85. https://doi.org/10.1002/rmv.1785.

    Article  PubMed  CAS  Google Scholar 

  69. Kim HY, Yoon JH, Lee HS, Cheong JY, Cho SW, Shin HD, Kim YJ. MicroRNA-196A-2 polymorphisms and hepatocellular carcinoma in patients with chronic hepatitis B. J Med Virol. 2014;86(3):446–53. https://doi.org/10.1002/jmv.23848.

    Article  CAS  PubMed  Google Scholar 

  70. Ladeiro Y, Couchy G, Balabaud C, Bioulac-Sage P, Pelletier L, Rebouissou S, Zucman-Rossi J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology. 2008;47(6):1955–63. https://doi.org/10.1002/hep.22256.

    Article  CAS  PubMed  Google Scholar 

  71. Lagiou P, Kuper H, Stuver SO, Tzonou A, Trichopoulos D, Adami HO. Role of diabetes mellitus in the etiology of hepatocellular carcinoma. J Natl Cancer Inst. 2000;92(13):1096–9.

    Article  CAS  PubMed  Google Scholar 

  72. Lambert MP, Paliwal A, Vaissière T, Chemin I, Zoulim F, Tommasino M, et al. Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol. 2011;54(4):705–15. https://doi.org/10.1016/j.jhep.2010.07.027.

    Article  CAS  PubMed  Google Scholar 

  73. Lapunzina P, Badia I, Galoppo C, De Matteo E, Silberman P, Tello A, et al. A patient with Simpson-Golabi-Behmel syndrome and hepatocellular carcinoma. J Med Genet. 1998;35(2):153–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics. 1992;13(4):1095–107.

    Article  CAS  PubMed  Google Scholar 

  75. Lee SM, Lee YG, Bae JB, Choi JK, Tayama C, Hata K, et al. HBx induces hypomethylation of distal intragenic CpG islands required for active expression of developmental regulators. Proc Natl Acad Sci U S A. 2014;111(26):9555–60. https://doi.org/10.1073/pnas.1400604111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lefèvre M, Felmlee DJ, Parnot M, Baumert TF, Schuster C. Syndecan 4 is involved in mediating HCV entry through interaction with lipoviral particle-associated apolipoprotein E. PLoS One. 2014;9(4):e95550. https://doi.org/10.1371/journal.pone.0095550.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lewis AP, Jopling CL. Regulation and biological function of the liver-specific miR-122. Biochem. Soc. Trans. 2010;38(6):1553–7. https://doi.org/10.1042/BST0381553.

    Article  CAS  PubMed  Google Scholar 

  78. Li B, Liu W, Wang L, Li M, Wang J, Huang L, et al. CpG island methylator phenotype associated with tumor recurrence in tumor-node-metastasis stage I hepatocellular carcinoma. Ann Surg Oncol. 2010a;17(7):1917–26. https://doi.org/10.1245/s10434-010-0921-7.

    Article  PubMed  Google Scholar 

  79. Li G, Cai G, Li D, Yin W. MicroRNAs and liver disease: viral hepatitis, liver fibrosis and hepatocellular carcinoma. Postgrad. Med. J. 2014;90(1060):106–12. https://doi.org/10.1136/postgradmedj-2013-131883; Epub 2013 Nov 15. Review.

    Article  CAS  PubMed  Google Scholar 

  80. Li H, Rauch T, Chen ZX, Szabó PE, Riggs AD, Pfeifer GP. The histone methyltransferase SETDB1 and the DNA methyltransferase DNMT3A interact directly and localize to promoters silenced in cancer cells. J Biol Chem. 2006;281(28):19489–500. https://doi.org/10.1074/jbc.M513249200.

    Article  CAS  PubMed  Google Scholar 

  81. Li H, Yang F, Gao B, Yu Z, Liu X, Xie F, Zhang J. Hepatitis B virus infection in hepatocellular carcinoma tissues upregulates expression of DNA methyltransferases. Int J Clin Exp Med. 2015;8(3):4175–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Li R, Qian N, Tao K, You N, Wang X, Dou K. MicroRNAs involved in neoplastic transformation of liver cancer stem cells. J Exp Clin Cancer Res. 2010b;29:169. https://doi.org/10.1186/1756-9966-29-169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Liu XY, Tang SH, Wu SL, Luo YH, Cao MR, Zhou HK, et al. Epigenetic modulation of insulin-like growth factor-II overexpression by hepatitis B virus X protein in hepatocellular carcinoma. Am J Cancer Res. 2015;5(3):956–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Liu Z, Tian Y, Machida K, Lai MM, Luo G, Foung SK, Ou JH. Transient activation of the PI3K-AKT pathway by hepatitis C virus to enhance viral entry. J Biol Chem. 2012;287(50):41922–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lohmann V. Hepatitis C virus RNA replication. Curr Top Microbiol Immunol. 2013;369:167–98. https://doi.org/10.1007/978-3-642-27340-7_7.

    CAS  PubMed  Google Scholar 

  86. Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15(4):r54. https://doi.org/10.1186/gb-2014-15-4-r54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Luger K, Rechsteiner TJ, Flaus AJ, Waye MM, Richmond TJ. Characterization of nucleosome core particles containing histone proteins made in bacteria. J Mol Biol. 1997;272(3):301–11. https://doi.org/10.1006/jmbi.1997.1235.

    Article  CAS  PubMed  Google Scholar 

  88. Ma Y, She XG, Ming YZ, Wan QQ, Ye QF. MicroRNA-144 suppresses tumorigenesis of hepatocellular carcinoma by targeting AKT3. Mol Med Rep. 2015;11(2):1378–83. https://doi.org/10.3892/mmr.2014.2844.

    Article  CAS  PubMed  Google Scholar 

  89. Machlin ES, Sarnow P, Sagan SM. Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci U S A. 2011;108(8):3193–8. https://doi.org/10.1073/pnas.1012464108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Maillard P, Huby T, Andréo U, Moreau M, Chapman J, Budkowska A. The interaction of natural hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins. FASEB J. 2006;20(6):735–7. https://doi.org/10.1096/fj.05-4728fje.

    CAS  PubMed  Google Scholar 

  91. Mariño-Ramírez L, Kann MG, Shoemaker BA, Landsman D. Histone structure and nucleosome stability. Expert Rev Proteomics. 2005;2(5):719–29. https://doi.org/10.1586/14789450.2.5.719.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mattis AN, Song G, Hitchner K, Kim RY, Lee AY, Sharma AD, et al. A screen in mice uncovers repression of lipoprotein lipase by microRNA-29a as a mechanism for lipid distribution away from the liver. Hepatology. 2015;61(1):141–52. https://doi.org/10.1002/hep.27379.

    Article  CAS  PubMed  Google Scholar 

  93. McKinney MD, Moon SJ, Kulesh DA, Larsen T, Schoepp RJ. Detection of viral RNA from paraffin-embedded tissues after prolonged formalin fixation. J Clin Virol. 2009;44(1):39–42. https://doi.org/10.1016/j.jcv.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  94. Moradpour D, Gosert R, Egger D, Penin F, Blum HE, Bienz K. Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antiviral Res. 2003;60(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  95. Morgan TR, Mandayam S, Jamal MM. Alcohol and hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S87–96.

    Article  CAS  PubMed  Google Scholar 

  96. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene. 2006;25(17):2537–45. https://doi.org/10.1038/sj.onc.1209283.

    Article  CAS  PubMed  Google Scholar 

  97. Murphy SK, Yang H, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145(5):1076–87. https://doi.org/10.1053/j.gastro.2013.07.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mwinyi J, Boström AE, Pisanu C, Murphy SK, Erhart W, Schafmayer C, et al. NAFLD is associated with methylation shifts with relevance for the expression of genes involved in lipoprotein particle composition. Biochim Biophys Acta. 2017;1862(3):314–23. https://doi.org/10.1016/j.bbalip.2016.12.005.

    Article  CAS  PubMed  Google Scholar 

  99. Narayan PJ, Lill C, Faull R, Curtis MA, Dragunow M. Increased acetyl and total histone levels in post-mortem Alzheimer’s disease brain. Neurobiol Dis. 2015;74:281–94. https://doi.org/10.1016/j.nbd.2014.11.023.

    Article  CAS  PubMed  Google Scholar 

  100. Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in alcohol-induced multi-organ injury. Biomolecules. 2015;5(4):3309–38. https://doi.org/10.3390/biom5043309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Niepmann M. Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle. 2009;8(10):1473–7. https://doi.org/10.4161/cc.8.10.8349.

    Article  CAS  PubMed  Google Scholar 

  102. Nishizawa M, Ikeya Y, Okumura T, Kimura T. Post-transcriptional inducible gene regulation by natural antisense RNA. Front Biosci (Landmark Ed). 2015;20:1–36.

    Article  Google Scholar 

  103. Ozen C, Yildiz G, Dagcan AT, Cevik D, Ors A, Keles U, et al. Genetics and epigenetics of liver cancer. N Biotechnol. 2013;30(4):381–4. https://doi.org/10.1016/j.nbt.2013.01.007.

    Article  CAS  PubMed  Google Scholar 

  104. Park D, Wang D, Chen G, Deng X. Establishment of patient-derived xenografts in mice. Bio Protoc. 2016;6(22). doi:10.21769/BioProtoc.2008.

  105. Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007;449(7164):919–22. https://doi.org/10.1038/nature06205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pham K, Delitto D, Knowlton AE, Hartlage ER, Madhavan R, Gonzalo DH, et al. Isolation of pancreatic cancer cells from a patient-derived xenograft model allows for practical expansion and preserved heterogeneity in culture. Am J Pathol. 2016;186(6):1537–46. https://doi.org/10.1016/j.ajpath.2016.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Pirola CJ, Gianotti TF, Burgueño AL, Rey-Funes M, Loidl CF, Mallardi P, et al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut. 2013;62(9):1356–63. https://doi.org/10.1136/gutjnl-2012-302962.

    Article  CAS  PubMed  Google Scholar 

  108. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature. 2009;457(7231):882–6. https://doi.org/10.1038/nature07684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Puszyk WM, Chatha K, Elsenheimer S, Crea F, Old RW. Methylation of the imprinted GNAS1 gene in cell-free plasma DNA: equal steady-state quantities of methylated and unmethylated DNA in plasma. Clin Chim Acta. 2009;400(1–2):107–10. https://doi.org/10.1016/j.cca.2008.10.018.

    Article  CAS  PubMed  Google Scholar 

  110. Ramadan RA, Zaki MA, Awad AM, El-Ghalid LA. Aberrant methylation of promoter region of SPINT2/HAI-2 gene: an epigenetic mechanism in hepatitis C virus-induced hepatocarcinogenesis. Genet Test Mol Biomarkers. 2015;19(7):399–404. https://doi.org/10.1089/gtmb.2015.0025.

    Article  CAS  PubMed  Google Scholar 

  111. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W. Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev. 2002;12(2):162–9.

    Article  CAS  PubMed  Google Scholar 

  112. Reid G, Métivier R, Lin CY, Denger S, Ibberson D, Ivacevic T, et al. Multiple mechanisms induce transcriptional silencing of a subset of genes, including oestrogen receptor alpha, in response to deacetylase inhibition by valproic acid and trichostatin A. Oncogene. 2005;24(31):4894–907. https://doi.org/10.1038/sj.onc.1208662.

    Article  CAS  PubMed  Google Scholar 

  113. Saito I, Miyamura T, Ohbayashi A, Harada H, Katayama T, Kikuchi S, et al. Hepatitis C virus infection is associated with the development of hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1990;87(17):6547–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sandoval J, Esteller M. Cancer epigenomics: beyond genomics. Curr Opin Genet Dev. 2012;22(1):50–5. https://doi.org/10.1016/j.gde.2012.02.008.

    Article  CAS  PubMed  Google Scholar 

  115. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, et al. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 2002;21(19):5017–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schweitzer A, Horn J, Mikolajczyk RT, Krause G, Ott JJ. Estimations of worldwide prevalence of chronic hepatitis B virus infection: a systematic review of data published between 1965 and 2013. Lancet. 2015;386(10003):1546–55. https://doi.org/10.1016/S0140-6736(15)61412-X.

    Article  PubMed  Google Scholar 

  117. Shanbhogue AK, Prasad SR, Takahashi N, Vikram R, Sahani DV. Recent advances in cytogenetics and molecular biology of adult hepatocellular tumors: implications for imaging and management. Radiology. 2011;258(3):673–93. https://doi.org/10.1148/radiol.10100376.

    Article  PubMed  Google Scholar 

  118. Sharma NR, Mateu G, Dreux M, Grakoui A, Cosset FL, Melikyan GB. Hepatitis C virus is primed by CD81 protein for low pH-dependent fusion. J Biol Chem. 2011;286(35):30361–76. https://doi.org/10.1074/jbc.M111.263350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis. 2005;5(9):558–67. https://doi.org/10.1016/S1473-3099(05)70216-4.

    Article  PubMed  Google Scholar 

  120. Shi Q, Jiang J, Luo G. Syndecan-1 serves as the major receptor for attachment of hepatitis C virus to the surfaces of hepatocytes. J Virol. 2013;87(12):6866–75. https://doi.org/10.1128/JVI.03475-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C, Barton DJ, Lemon SM. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A. 2012;109(3):941–6. https://doi.org/10.1073/pnas.1112263109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011;108(9):3630–5. https://doi.org/10.1073/pnas.1012311108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Sia D, Moeini A, Labgaa I, Villanueva A. The future of patient-derived tumor xenografts in cancer treatment. Pharmacogenomics. 2015;16(14):1671–83. https://doi.org/10.2217/pgs.15.102.

    Article  CAS  PubMed  Google Scholar 

  124. Simmonds P. The origin of hepatitis C virus. Curr Top Microbiol Immunol. 2013;369:1–15. https://doi.org/10.1007/978-3-642-27340-7_1.

    CAS  PubMed  Google Scholar 

  125. Starley BQ, Calcagno CJ, Harrison SA. Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. Hepatology. 2010;51(5):1820–32. https://doi.org/10.1002/hep.23594.

    Article  PubMed  Google Scholar 

  126. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol. 2009;36(1):4–12. https://doi.org/10.1007/s12016-008-8091-0.

    Article  CAS  PubMed  Google Scholar 

  127. Tiwari AK, Laird-Fick HS, Wali RK, Roy HK. Surveillance for gastrointestinal malignancies. World J Gastroenterol. 2012;18(33):4507–16. https://doi.org/10.3748/wjg.v18.i33.4507.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Torres HA, Nevah MI, Barnett BJ, Mahale P, Kontoyiannis DP, Hassan MM, Raad II. Hepatitis C virus genotype distribution varies by underlying disease status among patients in the same geographic region: a retrospective multicenter study. J Clin Virol. 2012;54(3):218–22. https://doi.org/10.1016/j.jcv.2012.03.002.

    Article  PubMed  Google Scholar 

  129. Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–33. https://doi.org/10.1093/nar/gkr254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005;12(2):110–2. https://doi.org/10.1038/nsmb0205-110.

    Article  CAS  PubMed  Google Scholar 

  131. Udali S, Guarini P, Ruzzenente A, Ferrarini A, Guglielmi A, Lotto V, et al. DNA methylation and gene expression profiles show novel regulatory pathways in hepatocellular carcinoma. Clin Epigenetics. 2015;7:43. https://doi.org/10.1186/s13148-015-0077-1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Um TH, Kim H, Oh BK, Kim MS, Kim KS, Jung G, Park YN. Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis. J Hepatol. 2011;54(5):939–47. https://doi.org/10.1016/j.jhep.2010.08.021.

    Article  CAS  PubMed  Google Scholar 

  133. Umer M, Qureshi SA, Hashmi ZY, Raza A, Ahmad J, Rahman M, Iqbal M. Promoter hypermethylation of Wnt pathway inhibitors in hepatitis C virus—induced multistep hepatocarcinogenesis. Virol. J. 2014;11:117. https://doi.org/10.1186/1743-422X-11-117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. van Malenstein H, van Pelt J, Verslype C. Molecular classification of hepatocellular carcinoma anno 2011. Eur J Cancer. 2011;47(12):1789–97. https://doi.org/10.1016/j.ejca.2011.04.027.

    Article  PubMed  CAS  Google Scholar 

  135. Vilarinho S, Erson-Omay EZ, Harmanci AS, Morotti R, Carrion-Grant G, Baranoski J, et al. Paediatric hepatocellular carcinoma due to somatic CTNNB1 and NFE2L2 mutations in the setting of inherited bi-allelic ABCB11 mutations. J Hepatol. 2014;61(5):1178–83. https://doi.org/10.1016/j.jhep.2014.07.003.

    Article  CAS  PubMed  Google Scholar 

  136. Villanueva A, Hoshida Y. Depicting the role of TP53 in hepatocellular carcinoma progression. J Hepatol. 2011;55(3):724–5. https://doi.org/10.1016/j.jhep.2011.03.018.

    Article  PubMed  Google Scholar 

  137. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561. https://doi.org/10.1371/journal.pone.0041561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wang XW, Hussain SP, Huo TI, Wu CG, Forgues M, Hofseth LJ, et al. Molecular pathogenesis of human hepatocellular carcinoma. Toxicology. 2002;181–182:43–7.

    Article  PubMed  Google Scholar 

  139. Warnefors M, Liechti A, Halbert J, Valloton D, Kaessmann H. Conserved microRNA editing in mammalian evolution, development and disease. Genome Biol. 2014;15(6):R83. https://doi.org/10.1186/gb-2014-15-6-r83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Wei X, Xiang T, Ren G, Tan C, Liu R, Xu X, Wu Z. miR-101 is down-regulated by the hepatitis B virus x protein and induces aberrant DNA methylation by targeting DNA methyltransferase 3A. Cell Signal. 2013;25(2):439–46. https://doi.org/10.1016/j.cellsig.2012.10.013.

    Article  CAS  PubMed  Google Scholar 

  141. Weitzman SA, Turk PW, Milkowski DH, Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A. 1994;91(4):1261–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wideroff L, Gridley G, Mellemkjaer L, Chow WH, Linet M, Keehn S, et al. Cancer incidence in a population-based cohort of patients hospitalized with diabetes mellitus in Denmark. J Natl Cancer Inst. 1997;89(18):1360–5.

    Article  CAS  PubMed  Google Scholar 

  143. Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology. 2011;140(1):124–31. https://doi.org/10.1053/j.gastro.2010.09.038.

    Article  PubMed  Google Scholar 

  144. Wu LM, Yang Z, Zhou L, Zhang F, Xie HY, Feng XW, et al. Identification of histone deacetylase 3 as a biomarker for tumor recurrence following liver transplantation in HBV-associated hepatocellular carcinoma. PLoS One. 2010a;5(12):e14460. https://doi.org/10.1371/journal.pone.0014460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wu LM, Zhang F, Zhou L, Yang Z, Xie HY, Zheng SS. Predictive value of CpG island methylator phenotype for tumor recurrence in hepatitis B virus-associated hepatocellular carcinoma following liver transplantation. BMC Cancer. 2010b;10:399. https://doi.org/10.1186/1471-2407-10-399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Wu YL, Wang D, Peng XE, Chen YL, Zheng DL, Chen WN, Lin X. Epigenetic silencing of NAD(P)H:quinone oxidoreductase 1 by hepatitis B virus X protein increases mitochondrial injury and cellular susceptibility to oxidative stress in hepatoma cells. Free Radic Biol Med. 2013;65:632–44. https://doi.org/10.1016/j.freeradbiomed.2013.07.037.

    Article  CAS  PubMed  Google Scholar 

  147. Xiao J, Bei Y, Liu J, Dimitrova-Shumkovska J, Kuang D, Zhou Q, Li J, Yang Y, Xiang Y, Wang F, Yang C, Yang W. miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. J. Cell. Mol. Med. 2016;20(2):204–16. https://doi.org/10.1111/jcmm.12733; Epub 2015 Dec 9.

    Article  CAS  PubMed  Google Scholar 

  148. Xu H, Hu YW, Zhao JY, Hu XM, Li SF, Wang YC, et al. MicroRNA-195-5p acts as an anti-oncogene by targeting PHF19 in hepatocellular carcinoma. Oncol Rep. 2015;34(1):175–82. https://doi.org/10.3892/or.2015.3957.

    Article  CAS  PubMed  Google Scholar 

  149. Xu Y, Liu L, Liu J, Zhang Y, Zhu J, Chen J, et al. A potentially functional polymorphism in the promoter region of miR-34b/c is associated with an increased risk for primary hepatocellular carcinoma. Int J Cancer. 2011;128(2):412–7. https://doi.org/10.1002/ijc.25342.

    Article  PubMed  CAS  Google Scholar 

  150. Zakhari S. Alcohol metabolism and epigenetics changes. Alcohol Res. 2013;35(1):6–16.

    PubMed  PubMed Central  Google Scholar 

  151. Zekri AR, Bahnasy AA, Shoeab FE, Mohamed WS, El-Dahshan DH, Ali FT, et al. Methylation of multiple genes in hepatitis C virus associated hepatocellular carcinoma. J Adv Res. 2014;5(1):27–40. https://doi.org/10.1016/j.jare.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  152. Zhang C, Guo X, Jiang G, Zhang L, Yang Y, Shen F, et al. CpG island methylator phenotype association with upregulated telomerase activity in hepatocellular carcinoma. Int J Cancer. 2008;123(5):998–1004. https://doi.org/10.1002/ijc.23650.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang F, Sodroski C, Cha H, Li Q, Liang TJ. Infection of hepatocytes with HCV increases cell surface levels of heparan sulfate proteoglycans, uptake of cholesterol and lipoprotein, and virus entry by up-regulating SMAD6 and SMAD7. Gastroenterology. 2017;152(1):257–70.e7. https://doi.org/10.1053/j.gastro.2016.09.033.

    Article  CAS  PubMed  Google Scholar 

  154. Zhang JC, Gao B, Yu ZT, Liu XB, Lu J, Xie F, et al. Promoter hypermethylation of p14 (ARF), RB, and INK4 gene family in hepatocellular carcinoma with hepatitis B virus infection. Tumour Biol. 2014;35(3):2795–802. https://doi.org/10.1007/s13277-013-1372-0.

    Article  CAS  PubMed  Google Scholar 

  155. Zhang S, Tan IB, Sapari NS, Grabsch HI, Okines A, Smyth EC, et al. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues. J Mol Diagn. 2015;17(3):242–50. https://doi.org/10.1016/j.jmoldx.2014.12.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zheng C, Li J, Wang Q, Liu W, Zhou J, Liu R, et al. MicroRNA-195 functions as a tumor suppressor by inhibiting CBX4 in hepatocellular carcinoma. Oncol Rep. 2015;33(3):1115–22. https://doi.org/10.3892/or.2015.3734.

    Article  CAS  PubMed  Google Scholar 

  157. Zink LM, Hake SB. Histone variants: nuclear function and disease. Curr Opin Genet Dev. 2016;37:82–9. https://doi.org/10.1016/j.gde.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  158. Zopf S, Ocker M, Neureiter D, Alinger B, Gahr S, Neurath MF, Di Fazio P. Inhibition of DNA methyltransferase activity and expression by treatment with the pan-deacetylase inhibitor panobinostat in hepatocellular carcinoma cell lines. BMC Cancer. 2012;12:386. https://doi.org/10.1186/1471-2407-12-386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williams Puszyk Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Puszyk, W., Robertson, K., Liu, C. (2018). Epigenetic Regulations in the Pathogenesis of HCC and the Clinical Application. In: Liu, C. (eds) Precision Molecular Pathology of Liver Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-68082-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68082-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68080-4

  • Online ISBN: 978-3-319-68082-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics