Molecular Classification of Hepatocellular Carcinoma and Precision Medicine

  • Michael FeelyEmail author
Part of the Molecular Pathology Library book series (MPLB)


The incidence of hepatocellular carcinoma in increasing globally and malignant liver tumors now represents the second leading cause of cancer-related mortality worldwide [1–3]. In the United States, the incidence of hepatocellular carcinoma has tripled over the past 30 years where it has become the fastest rising cause of cancer-related deaths [4]. With this emergence has come an increased effort, largely within the preceding decade, to better appreciate the molecular pathogenesis of this disease. As with other malignancies that have been examined in this way, the eventual goal of these investigations is to identify potential targets for therapy and to correlate these molecular mechanisms with patient prognosis. Here a summary of many of the molecular mechanisms identified in hepatocellular carcinoma is provided as well as outline of the current attempts at a molecular classification system of these tumors.


  1. 1.
    Mittal S, El-Serag HB. Epidemiology of hepatocellular carcinoma: consider the population. J Clin Gastroenterol. 2013;47(Suppl):S2–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Bosch FX, Ribes J, Cleries R, Diaz M. Epidemiology of hepatocellular carcinoma. Clin Liver Dis. 2005;9(2):191–211, v.PubMedCrossRefGoogle Scholar
  3. 3.
    Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet. 2012;379(9822):1245–55.PubMedCrossRefGoogle Scholar
  4. 4.
    El-Serag HB. Hepatocellular carcinoma. N Engl J Med. 2011;365(12):1118–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Vinagre J, Almeida A, Populo H, et al. Frequency of TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.PubMedCrossRefGoogle Scholar
  6. 6.
    Huang DS, Wang Z, He XJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969–76.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Gunes C, Rudolph KL. The role of telomeres in stem cells and cancer. Cell. 2013;152(3):390–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Artandi SE. Telomeres, telomerase, and human disease. N Engl J Med. 2006;355(12):1195–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Totoki Y, Tatsuno K, Covington KR, et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):1267–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Satyanarayana A, Manns MP, Rudolph KL. Telomeres and telomerase: a dual role in hepatocarcinogenesis. Hepatology. 2004;40(2):276–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Quaas A, Oldopp T, Tharun L, et al. Frequency of TERT promoter mutations in primary tumors of the liver. Virchows Arch. 2014;465(6):673–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Eichenmuller M, Trippel F, Kreuder M, et al. The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J Hepatol. 2014;61(6):1312–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Farazi PA, Glickman J, Jiang S, Yu A, Rudolph KL, DePinho RA. Differential impact of telomere dysfunction on initiation and progression of hepatocellular carcinoma. Cancer Res. 2003;63(16):5021–7.PubMedGoogle Scholar
  14. 14.
    Nault JC, Calderaro J, Di Tommaso L, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92.PubMedCrossRefGoogle Scholar
  15. 15.
    Pilati C, Letouze E, Nault JC, et al. Genomic profiling of hepatocellular adenomas reveals recurrent FRK-activating mutations and the mechanisms of malignant transformation. Cancer Cell. 2014;25(4):428–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Nault JC, Mallet M, Pilati C, et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun. 2013;4:2218.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Sung WK, Zheng H, Li S, et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet. 2012;44(7):765–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Minami M, Daimon Y, Mori K, et al. Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene. 2005;24(27):4340–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene. 2003;22(24):3813–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Behari J. The Wnt/beta-catenin signaling pathway in liver biology and disease. Expert Rev Gastroenterol Hepatol. 2010;4(6):745–56.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Takigawa Y, Brown AM. Wnt signaling in liver cancer. Curr Drug Targets. 2008;9(11):1013–24.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Cavard C, Colnot S, Audard V, et al. Wnt/beta-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 2008;4(5):647–60.PubMedCrossRefGoogle Scholar
  23. 23.
    de La Coste A, Romagnolo B, Billuart P, et al. Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A. 1998;95(15):8847–51.PubMedCentralCrossRefGoogle Scholar
  24. 24.
    Satoh S, Daigo Y, Furukawa Y, et al. AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1. Nat Genet. 2000;24(3):245–50.PubMedCrossRefGoogle Scholar
  25. 25.
    Su LK, Abdalla EK, Law CH, Kohlmann W, Rashid A, Vauthey JN. Biallelic inactivation of the APC gene is associated with hepatocellular carcinoma in familial adenomatous polyposis coli. Cancer. 2001;92(2):332–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Boyault S, Rickman DS, de Reynies A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology. 2007;45(1):42–52.PubMedCrossRefGoogle Scholar
  27. 27.
    Yuzugullu H, Benhaj K, Ozturk N, et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol Cancer. 2009;8:90.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Audard V, Grimber G, Elie C, et al. Cholestasis is a marker for hepatocellular carcinomas displaying beta-catenin mutations. J Pathol. 2007;212(3):345–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol. 2015;16(7):393–405.PubMedCrossRefGoogle Scholar
  30. 30.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253(5015):49–53.PubMedCrossRefGoogle Scholar
  31. 31.
    Laurent-Puig P, Zucman-Rossi J. Genetics of hepatocellular tumors. Oncogene. 2006;25(27):3778–86.PubMedCrossRefGoogle Scholar
  32. 32.
    Hussain SP, Schwank J, Staib F, Wang XW, Harris CC. TP53 mutations and hepatocellular carcinoma: insights into the etiology and pathogenesis of liver cancer. Oncogene. 2007;26(15):2166–76.PubMedCrossRefGoogle Scholar
  33. 33.
    Laurent-Puig P, Legoix P, Bluteau O, et al. Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology. 2001;120(7):1763–73.PubMedCrossRefGoogle Scholar
  34. 34.
    Fujimoto A, Totoki Y, Abe T, et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Bressac B, Kew M, Wands J, Ozturk M. Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature. 1991;350(6317):429–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Kew MC. Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointestin Liver Dis. 2013;22(3):305–10.PubMedGoogle Scholar
  37. 37.
    Teramoto T, Satonaka K, Kitazawa S, Fujimori T, Hayashi K, Maeda S. p53 gene abnormalities are closely related to hepatoviral infections and occur at a late stage of hepatocarcinogenesis. Cancer Res. 1994;54(1):231–5.PubMedGoogle Scholar
  38. 38.
    Calderaro J, Couchy G, Imbeaud S, et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol. 2017;67(4):727–38.Google Scholar
  39. 39.
    Hsu H, Peng S, Lai P, Chu J, Lee P. Mutations of p53 gene in hepatocellular-carcinoma (hcc) correlate with tumor progression and patient prognosis—a study of 138 patients with unifocal hcc. Int J Oncol. 1994;4(6):1341–7.PubMedGoogle Scholar
  40. 40.
    Yano M, Hamatani K, Eguchi H, et al. Prognosis in patients with hepatocellular carcinoma correlates to mutations of p53 and/or hMSH2 genes. Eur J Cancer. 2007;43(6):1092–100.PubMedCrossRefGoogle Scholar
  41. 41.
    Hayashi H, Sugio K, Matsumata T, Adachi E, Takenaka K, Sugimachi K. The clinical significance of p53 gene mutation in hepatocellular carcinomas from Japan. Hepatology. 1995;22(6):1702–7.PubMedGoogle Scholar
  42. 42.
    Serrano M, Hannon GJ, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993;366(6456):704–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Hui AM, Sakamoto M, Kanai Y, et al. Inactivation of p16INK4 in hepatocellular carcinoma. Hepatology. 1996;24(3):575–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Jin M, Piao Z, Kim NG, et al. p16 is a major inactivation target in hepatocellular carcinoma. Cancer. 2000;89(1):60–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Csepregi A, Ebert MP, Rocken C, et al. Promoter methylation of CDKN2A and lack of p16 expression characterize patients with hepatocellular carcinoma. BMC Cancer. 2010;10:317.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kaneto H, Sasaki S, Yamamoto H, et al. Detection of hypermethylation of the p16(INK4A) gene promoter in chronic hepatitis and cirrhosis associated with hepatitis B or C virus. Gut. 2001;48(3):372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Song X, Wang S, Li L. New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell. 2014;5(3):186–93.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ishizaki Y, Ikeda S, Fujimori M, et al. Immunohistochemical analysis and mutational analyses of beta-catenin, Axin family and APC genes in hepatocellular carcinomas. Int J Oncol. 2004;24(5):1077–83.PubMedGoogle Scholar
  49. 49.
    Li J, Quan H, Liu Q, Si Z, He Z, Qi H. Alterations of axis inhibition protein 1 (AXIN1) in hepatitis B virus-related hepatocellular carcinoma and overexpression of AXIN1 induces apoptosis in hepatocellular cancer cells. Oncol Res. 2013;20(7):281–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–74.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Challen C, Guo K, Collier JD, Cavanagh D, Bassendine MF. Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. J Hepatol. 1992;14(2–3):342–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Weihrauch M, Benick M, Lehner G, et al. High prevalence of K-ras-2 mutations in hepatocellular carcinomas in workers exposed to vinyl chloride. Int Arch Occup Environ Health. 2001;74(6):405–10.PubMedCrossRefGoogle Scholar
  53. 53.
    Rudalska R, Dauch D, Longerich T, et al. In vivo RNAi screening identifies a mechanism of sorafenib resistance in liver cancer. Nat Med. 2014;20(10):1138–46.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–90.PubMedCrossRefGoogle Scholar
  55. 55.
    Bottaro DP, Rubin JS, Faletto DL, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19(9):2310–8.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Noguchi O, Enomoto N, Ikeda T, Kobayashi F, Marumo F, Sato C. Gene expressions of c-met and hepatocyte growth factor in chronic liver disease and hepatocellular carcinoma. J Hepatol. 1996;24(3):286–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Suzuki K, Hayashi N, Yamada Y, et al. Expression of the c-met protooncogene in human hepatocellular carcinoma. Hepatology. 1994;20(5):1231–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Park WS, Dong SM, Kim SY, et al. Somatic mutations in the kinase domain of the Met/hepatocyte growth factor receptor gene in childhood hepatocellular carcinomas. Cancer Res. 1999;59(2):307–10.PubMedGoogle Scholar
  60. 60.
    Kondo S, Ojima H, Tsuda H, et al. Clinical impact of c-Met expression and its gene amplification in hepatocellular carcinoma. Int J Clin Oncol. 2013;18(2):207–13.PubMedCrossRefGoogle Scholar
  61. 61.
    Santoro A, Rimassa L, Borbath I, et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013;14(1):55–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685–700.PubMedCrossRefGoogle Scholar
  63. 63.
    Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol. 2000;1(3):169–78.PubMedCrossRefGoogle Scholar
  64. 64.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29(2):117–29.PubMedCrossRefGoogle Scholar
  65. 65.
    Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7(2):131–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008;47(6):2059–67.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fischer AN, Fuchs E, Mikula M, Huber H, Beug H, Mikulits W. PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. Oncogene. 2007;26(23):3395–405.PubMedCrossRefGoogle Scholar
  68. 68.
    Hoshida Y, Nijman SM, Kobayashi M, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res. 2009;69(18):7385–92.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Giannelli G, Villa E, Lahn M. Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74(7):1890–4.PubMedCrossRefGoogle Scholar
  70. 70.
    Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–25.PubMedCrossRefGoogle Scholar
  71. 71.
    Chiang DY, Villanueva A, Hoshida Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008;68(16):6779–88.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Litvinov SV, Bakker HA, Gourevitch MM, Velders MP, Warnaar SO. Evidence for a role of the epithelial glycoprotein 40 (Ep-CAM) in epithelial cell-cell adhesion. Cell Adhes Commun. 1994;2(5):417–28.PubMedCrossRefGoogle Scholar
  73. 73.
    Balzar M, Winter MJ, de Boer CJ, Litvinov SV. The biology of the 17-1A antigen (Ep-CAM). J Mol Med (Berl). 1999;77(10):699–712.CrossRefGoogle Scholar
  74. 74.
    Yamashita T, Ji J, Budhu A, et al. EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 2009;136(3):1012–24.PubMedCrossRefGoogle Scholar
  75. 75.
    Tan PS, Nakagawa S, Goossens N, et al. Clinicopathological indices to predict hepatocellular carcinoma molecular classification. Liver Int. 2016;36(1):108–18.PubMedCrossRefGoogle Scholar
  76. 76.
    Li Y, Zhang W, Doughtie A, et al. Up-regulation of fibroblast growth factor 19 and its receptor associates with progression from fatty liver to hepatocellular carcinoma. Oncotarget. 2016;7(32):52329–39.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283–96.PubMedGoogle Scholar
  78. 78.
    Hu TH, Huang CC, Lin PR, et al. Expression and prognostic role of tumor suppressor gene PTEN/MMAC1/TEP1 in hepatocellular carcinoma. Cancer. 2003;97(8):1929–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Hu TH, Wang CC, Huang CC, et al. Down-regulation of tumor suppressor gene PTEN, overexpression of p53, plus high proliferating cell nuclear antigen index predict poor patient outcome of hepatocellular carcinoma after resection. Oncol Rep. 2007;18(6):1417–26.PubMedGoogle Scholar
  80. 80.
    Kawamura N, Nagai H, Bando K, et al. PTEN/MMAC1 mutations in hepatocellular carcinomas: somatic inactivation of both alleles in tumors. Jpn J Cancer Res. 1999;90(4):413–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Peyrou M, Bourgoin L, Foti M. PTEN in liver diseases and cancer. World J Gastroenterol. 2010;16(37):4627–33.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.PubMedCrossRefGoogle Scholar
  83. 83.
    Nishida N, Goel A. Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics. 2011;12(2):130–7.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kondo Y, Kanai Y, Sakamoto M, Mizokami M, Ueda R, Hirohashi S. Genetic instability and aberrant DNA methylation in chronic hepatitis and cirrhosis—a comprehensive study of loss of heterozygosity and microsatellite instability at 39 loci and DNA hypermethylation on 8 CpG islands in microdissected specimens from patients with hepatocellular carcinoma. Hepatology. 2000;32(5):970–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Jung JK, Arora P, Pagano JS, Jang KL. Expression of DNA methyltransferase 1 is activated by hepatitis B virus X protein via a regulatory circuit involving the p16INK4a-cyclin D1-CDK 4/6-pRb-E2F1 pathway. Cancer Res. 2007;67(12):5771–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Arora P, Kim EO, Jung JK, Jang KL. Hepatitis C virus core protein downregulates E-cadherin expression via activation of DNA methyltransferase 1 and 3b. Cancer Lett. 2008;261(2):244–52.PubMedCrossRefGoogle Scholar
  87. 87.
    Katoh H, Shibata T, Kokubu A, et al. Epigenetic instability and chromosomal instability in hepatocellular carcinoma. Am J Pathol. 2006;168(4):1375–84.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–47.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12(9):735–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Nassirpour R, Mehta PP, Yin MJ. miR-122 regulates tumorigenesis in hepatocellular carcinoma by targeting AKT3. PLoS One. 2013;8(11):e79655.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bai S, Nasser MW, Wang B, et al. MicroRNA-122 inhibits tumorigenic properties of hepatocellular carcinoma cells and sensitizes these cells to sorafenib. J Biol Chem. 2009;284(46):32015–27.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Aoki H, Kajino K, Arakawa Y, Hino O. Molecular cloning of a rat chromosome putative recombinogenic sequence homologous to the hepatitis B virus encapsidation signal. Proc Natl Acad Sci U S A. 1996;93(14):7300–4.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008;57(7):941–50.PubMedCrossRefGoogle Scholar
  94. 94.
    Bakhoum SF, Danilova OV, Kaur P, Levy NB, Compton DA. Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clin Cancer Res. 2011;17(24):7704–11.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    How C, Bruce J, So J, et al. Chromosomal instability as a prognostic marker in cervical cancer. BMC Cancer. 2015;15:361.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wilkens L, Flemming P, Gebel M, et al. Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2004;101(5):1309–14.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Katoh H, Ojima H, Kokubu A, et al. Genetically distinct and clinically relevant classification of hepatocellular carcinoma: putative therapeutic targets. Gastroenterology. 2007;133(5):1475–86.PubMedCrossRefGoogle Scholar
  98. 98.
    Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39.e24.PubMedCrossRefGoogle Scholar
  99. 99.
    Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest. 2006;116(6):1582–95.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Villanueva A, Hoshida Y, Battiston C, et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology. 2011;140(5):1501–12.e02.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zucman-Rossi J, Benhamouche S, Godard C, et al. Differential effects of inactivated Axin1 and activated beta-catenin mutations in human hepatocellular carcinomas. Oncogene. 2007;26(5):774–80.PubMedCrossRefGoogle Scholar
  102. 102.
    Goossens N, Sun X, Hoshida Y. Molecular classification of hepatocellular carcinoma: potential therapeutic implications. Hepat Oncol. 2015;2(4):371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Toyoda H, Kumada T, Tada T, Sone Y, Kaneoka Y, Maeda A. Tumor markers for hepatocellular carcinoma: simple and significant predictors of outcome in patients with HCC. Liver Cancer. 2015;4(2):126–36.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Pathology, Immunology, and Laboratory MedicineCollege of Medicine, University of FloridaGainesvilleUSA

Personalised recommendations