Advertisement

Immune Regulation in HCC and the Prospect of Immunotherapy

  • Joydeep Chakraborty
  • Eric Hilgenfeldt
  • Roniel CabreraEmail author
Chapter
Part of the Molecular Pathology Library book series (MPLB)

Abstract

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide, and the prognosis remains poor. The currently available treatment protocols have not been able to affect the overall prognosis significantly. Immune processes have been shown to play a major role in tumorigenesis of HCC. The immune tolerance of the liver which allows liver transplant candidates to be maintained on minimal doses of immunosuppressants also contributes to HCC development and metastasis. This understanding has opened the scope of immune-based treatments in advanced HCC. Various preclinical and early clinical trials of immunotherapy in HCC, including immune checkpoint blockade, immune cell-based therapy, vaccination strategies, and combination of these approaches with conventional therapies, are ongoing. In this chapter, we discuss the immune regulation in HCC and the evolution of immune-based treatment approaches for hepatocellular carcinoma.

Keywords

Hepatocellular carcinoma Alpha-fetoprotein Glypican-3 Tumor antigens Immune checkpoint blockade Cancer vaccine Immunotherapy 

Abbreviations

AFP

Alpha-fetoprotein

APC

Antigen-presenting cell

CD

Cluster of differentiation

CTA

Cancer testis antigen

CTL

Cytotoxic T lymphocyte

CTLA

Cytotoxic T lymphocyte-associated antigen

DC

Dendritic cell

FGF

Fibroblast growth factor

GM-CSF

Granulocyte-macrophage colony-stimulating factor

GPC3

Glypican-3

HCC

Hepatocellular carcinoma

hTERT

Human telomerase reverse transcriptase

ICAM

Intercellular adhesion molecule

IDO

Indoleamine dioxygenase

IFN

Interferon

IL

Interleukin

LFA

Lymphocyte function-associated antigen

LSEC

Liver sinusoidal endothelial cells

MDSC

Myeloid-derived suppressor cells

MHC

Major histocompatibility complex

NK

Natural killer

PBMC

Peripheral blood mononuclear cells

PD-1

Programmed death receptor 1

PD-L1

Programmed death-1 ligand

PG

Prostaglandin

RFA

Radiofrequency ablation

TAA

Tumor-associated antigen

TACE

Transarterial chemoembolization

TGF

Transforming growth factor

TIL

Tumor-infiltrating lymphocytes

TLR

Toll-like receptor

TNF

Tumor necrosis factor

Treg

T regulatory cells

VEGF

Vascular endothelial growth factor

References

  1. 1.
    Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13:2140.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Elmberg M, Hultcrantz R, Ekbom A, Brandt L, Olsson S, Olsson R, et al. Cancer risk in patients with hereditary hemochromatosis and in their first-degree relatives. Gastroenterology. 2003;125(6):1733–41.PubMedCrossRefGoogle Scholar
  3. 3.
    Sherman M. Hepatocellular carcinoma: epidemiology, risk factors, and screening. Semin Liver Dis. 2005;25(2):143–54.PubMedCrossRefGoogle Scholar
  4. 4.
    Hassan MM, Hwang LY, Hatten CJ, Swaim M, Li D, Abbruzzese JL, et al. Risk factors for hepatocellular carcinoma: synergism of alcohol with viral hepatitis and diabetes mellitus. Hepatology. 2002;36(5):1206–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Degos F, Christidis C, Ganne-Carrie N, Farmachidi JP, Degott C, Guettier C, et al. Hepatitis C virus related cirrhosis: time to occurrence of hepatocellular carcinoma and death. Gut. 2000;47(1):131–6.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7):2557–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Nordenstedt H, White DL, El-Serag HB. The changing pattern of epidemiology in hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):S206–14.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Bismuth H, Majno PE. Hepatobiliary surgery. J Hepatol. 2000;32(1 Suppl):208–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Management of Hepatocellular Carcinoma (HCC) - Viral Hepatitis. 2015. http://www.hepatitis.va.gov/provider/guidelines/2009HCC.asp#note18
  11. 11.
    Chen MS, Li JQ, Zheng Y, Guo RP, Liang HH, Zhang YQ, et al. A prospective randomized trial comparing percutaneous local ablative therapy and partial hepatectomy for small hepatocellular carcinoma. Ann Surg. 2006;243(3):321–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brunello F, Veltri A, Carucci P, Pagano E, Ciccone G, Moretto P, et al. Radiofrequency ablation versus ethanol injection for early hepatocellular carcinoma: a randomized controlled trial. Scand J Gastroenterol. 2008;43(6):727–35.PubMedCrossRefGoogle Scholar
  13. 13.
    Lencioni RA, Allgaier HP, Cioni D, Olschewski M, Deibert P, Crocetti L, et al. Small hepatocellular carcinoma in cirrhosis: randomized comparison of radio-frequency thermal ablation versus percutaneous ethanol injection. Radiology. 2003;228(1):235–40.PubMedCrossRefGoogle Scholar
  14. 14.
    Shiina S, Teratani T, Obi S, Sato S, Tateishi R, Fujishima T, et al. A randomized controlled trial of radiofrequency ablation with ethanol injection for small hepatocellular carcinoma. Gastroenterology. 2005;129(1):122–30.PubMedCrossRefGoogle Scholar
  15. 15.
    Hasegawa K, Kokudo N, Shiina S, Tateishi R, Makuuchi M. Surgery versus radiofrequency ablation for small hepatocellular carcinoma: start of a randomized controlled trial (SURF trial). Hepatol Res. 2010;40(8):851–2.PubMedCrossRefGoogle Scholar
  16. 16.
    Liver EAFTSOT, Cancer EOFRATO. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56(4):908–43.CrossRefGoogle Scholar
  17. 17.
    Bruix J, Sherman M, Diseases AAftSoL. Management of hepatocellular carcinoma: an update. Hepatology. 2011;53(3):1020–2.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Clark TWI. Complications of hepatic chemoembolization. Semin Intervent Radiol. 2006;23(2):119–25.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lin MT, Kuo PH. Pulmonary lipiodol embolism after transcatheter arterial chemoembolization for hepatocellular carcinoma. J R Soc Med Short Rep. 2010;1:6.Google Scholar
  20. 20.
    Chung JW, Park JH, Han JK, Choi BI, Han MC, Lee HS, et al. Hepatic tumors: predisposing factors for complications of transcatheter oily chemoembolization. Radiology. 1996;198(1):33–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Berger DH, Carrasco CH, Hohn DC, Curley SA. Hepatic artery chemoembolization or embolization for primary and metastatic liver tumors: post-treatment management and complications. J Surg Oncol. 1995;60(2):116–21.PubMedCrossRefGoogle Scholar
  22. 22.
    Finn RS. Drug therapy: sorafenib. Hepatology. 2010;51(5):1843–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004;64(19):7099–109.PubMedCrossRefGoogle Scholar
  24. 24.
    Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, et al. Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 2007;59(5):561–74.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006;66(24):11851–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Schlachterman A, Craft WW, Hilgenfeldt E, Mitra A, Cabrera R. Current and future treatments for hepatocellular carcinoma. World J Gastroenterol. 2015;21(28):8478–91.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Miamen AG, Dong H, Roberts LR. Immunotherapeutic approaches to hepatocellular carcinoma treatment. Liver Cancer. 2012;1(3–4):226–37.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Herkel J, Jagemann B, Wiegard C, Lazaro JF, Lueth S, Kanzler S, et al. MHC class II-expressing hepatocytes function as antigen-presenting cells and activate specific CD4 T lymphocytes. Hepatology. 2003;37(5):1079–85.PubMedCrossRefGoogle Scholar
  29. 29.
    Crispe IN. Hepatic T cells and liver tolerance. Nat Rev Immunol. 2003;3(1):51–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Schurich A, Berg M, Stabenow D, Böttcher J, Kern M, Schild HJ, et al. Dynamic regulation of CD8 T cell tolerance induction by liver sinusoidal endothelial cells. J Immunol. 2010;184(8):4107–14.PubMedCrossRefGoogle Scholar
  31. 31.
    Pardee AD, Butterfield LH. Immunotherapy of hepatocellular carcinoma: unique challenges and clinical opportunities. Oncoimmunology. 2012;1(1):48–55.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Thomson AW, Knolle PA. Antigen-presenting cell function in the tolerogenic liver environment. Nat Rev Immunol. 2010;10(11):753–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Müschen M, Warskulat U, Peters-Regehr T, Bode JG, Kubitz R, Häussinger D. Involvement of CD95 (Apo-1/Fas) ligand expressed by rat Kupffer cells in hepatic immunoregulation. Gastroenterology. 1999;116(3):666–77.PubMedCrossRefGoogle Scholar
  34. 34.
    Bradham CA, Plümpe J, Manns MP, Brenner DA, Trautwein C. Mechanisms of hepatic toxicity. I. TNF-induced liver injury. Am J Physiol. 1998;275(3 Pt 1):G387–92.PubMedGoogle Scholar
  35. 35.
    Kuniyasu Y, Marfani SM, Inayat IB, Sheikh SZ, Mehal WZ. Kupffer cells required for high affinity peptide-induced deletion, not retention, of activated CD8+ T cells by mouse liver. Hepatology. 2004;39(4):1017–27.PubMedCrossRefGoogle Scholar
  36. 36.
    Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, et al. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology. 2015;62(2):481–95.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hammerich L, Tacke F. Emerging roles of myeloid derived suppressor cells in hepatic inflammation and fibrosis. World J Gastrointest Pathophysiol. 2015;6(3):43–50.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ionescu AG, Streba LA, Vere CC, Ciurea ME, Streba CT, Ionescu M, et al. Histopathological and immunohistochemical study of hepatic stellate cells in patients with viral C chronic liver disease. Rom J Morphol Embryol. 2013;54(4):983–91.PubMedGoogle Scholar
  40. 40.
    Breous E, Thimme R. Potential of immunotherapy for hepatocellular carcinoma. J Hepatol. 2011;54(4):830–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Cai XY, Gao Q, Qiu SJ, Ye SL, Wu ZQ, Fan J, et al. Dendritic cell infiltration and prognosis of human hepatocellular carcinoma. J Cancer Res Clin Oncol. 2006;132(5):293–301.PubMedCrossRefGoogle Scholar
  42. 42.
    Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology. 2009;50(3):799–807.PubMedCrossRefGoogle Scholar
  43. 43.
    Tseng CT, Klimpel GR. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J Exp Med. 2002;195(1):43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, et al. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol. 2008;129(3):428–37.PubMedCrossRefGoogle Scholar
  45. 45.
    Hong YP, Li ZD, Prasoon P, Zhang Q. Immunotherapy for hepatocellular carcinoma: from basic research to clinical use. World J Hepatol. 2015;7(7):980–92.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Safety Study of Liver Natural Killer Cell Therapy for Hepatoma Liver Transplantation - Full Text View - ClinicalTrials.gov. 2015. https://www.clinicaltrials.gov/ct2/show/NCT01147380?term=Hepatocellular+carcinoma+immunotherapy&rank=6
  47. 47.
    Hyodo N, Nakamura I, Imawari M. Hepatitis B core antigen stimulates interleukin-10 secretion by both T cells and monocytes from peripheral blood of patients with chronic hepatitis B virus infection. Clin Exp Immunol. 2004;135(3):462–6.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther. 2010;10(11):1563–72.PubMedCrossRefGoogle Scholar
  49. 49.
    Golden-Mason L, Palmer B, Klarquist J, Mengshol JA, Castelblanco N, Rosen HR. Upregulation of PD-1 expression on circulating and intrahepatic hepatitis C virus-specific CD8+ T cells associated with reversible immune dysfunction. J Virol. 2007;81(17):9249–58.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Golden-Mason L, Palmer BE, Kassam N, Townshend-Bulson L, Livingston S, McMahon BJ, et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J Virol. 2009;83(18):9122–30.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Shirabe K, Motomura T, Muto J, Toshima T, Matono R, Mano Y, et al. Tumor-infiltrating lymphocytes and hepatocellular carcinoma: pathology and clinical management. Int J Clin Oncol. 2010;15(6):552–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Hilgenfeldt EG, Schlachterman A, Firpi RJ. Hepatitis C: treatment of difficult to treat patients. World J Hepatol. 2015;7(15):1953–63.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    O’Bryan JM, Potts JA, Bonkovsky HL, Mathew A, Rothman AL, Group H-CT. Extended interferon-alpha therapy accelerates telomere length loss in human peripheral blood T lymphocytes. PLoS One. 2011;6(8):e20922.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Saito K, Ait-Goughoulte M, Truscott SM, Meyer K, Blazevic A, Abate G, et al. Hepatitis C virus inhibits cell surface expression of HLA-DR, prevents dendritic cell maturation, and induces interleukin-10 production. J Virol. 2008;82(7):3320–8.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Ormandy LA, Hillemann T, Wedemeyer H, Manns MP, Greten TF, Korangy F. Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma. Cancer Res. 2005;65(6):2457–64.PubMedCrossRefGoogle Scholar
  56. 56.
    Greten TF, Manns MP, Korangy F. Immunotherapy of hepatocellular carcinoma. J Hepatol. 2006;45(6):868–78.PubMedCrossRefGoogle Scholar
  57. 57.
    Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood). 2001;226(5):377–408.CrossRefGoogle Scholar
  58. 58.
    Butterfield LH, Ribas A, Meng WS, Dissette VB, Amarnani S, Vu HT, et al. T-cell responses to HLA-A*0201 immunodominant peptides derived from alpha-fetoprotein in patients with hepatocellular cancer. Clin Cancer Res. 2003;9(16 Pt 1):5902–8.PubMedGoogle Scholar
  59. 59.
    Liu Y, Daley S, Evdokimova VN, Zdobinski DD, Potter DM, Butterfield LH. Hierarchy of alpha fetoprotein (AFP)-specific T cell responses in subjects with AFP-positive hepatocellular cancer. J Immunol. 2006;177(1):712–21.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Thimme R, Neagu M, Boettler T, Neumann-Haefelin C, Kersting N, Geissler M, et al. Comprehensive analysis of the alpha-fetoprotein-specific CD8+ T cell responses in patients with hepatocellular carcinoma. Hepatology. 2008;48(6):1821–33.PubMedCrossRefGoogle Scholar
  61. 61.
    Greten TF, Ormandy LA, Fikuart A, Hochst B, Henschen S, Horning M, et al. Low-dose cyclophosphamide treatment impairs regulatory T cells and unmasks AFP-specific CD4+ T-cell responses in patients with advanced HCC. J Immunother. 2010;33(2):211–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Ho M, Kim H. Glypican-3: a new target for cancer immunotherapy. Eur J Cancer. 2011;47(3):333–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Xiao W-K, Qi C-Y, Chen D, Li S-Q, Fu S-J, Peng B-G, et al. Prognostic significance of glypican-3 in hepatocellular carcinoma: a meta-analysis. BMC Cancer. 2014;14(1):104.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Wang YL, Zhu ZJ, Teng DH, Yao Z, Gao W, Shen ZY. Glypican-3 expression and its relationship with recurrence of HCC after liver transplantation. World J Gastroenterol. 2012;18(19):2408–14.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Li SQ, Lin J, Qi CY, Fu SJ, Xiao WK, Peng BG, et al. GPC3 DNA vaccine elicits potent cellular antitumor immunity against HCC in mice. Hepatogastroenterology. 2014;61(130):278–84.PubMedGoogle Scholar
  66. 66.
    Komori H, Nakatsura T, Senju S, Yoshitake Y, Motomura Y, Ikuta Y, et al. Identification of HLA-A2- or HLA-A24-restricted CTL epitopes possibly useful for glypican-3-specific immunotherapy of hepatocellular carcinoma. Clin Cancer Res. 2006;12(9):2689–97.PubMedCrossRefGoogle Scholar
  67. 67.
    Dargel C, Bassani-Sternberg M, Hasreiter J, Zani F, Bockmann JH, Thiele F, et al. T cells engineered to express a T-cell receptor specific for Glypican-3 to recognize and kill hepatoma cells in vitro and in mice. Gastroenterology. 2015;149(4):1042–52.PubMedCrossRefGoogle Scholar
  68. 68.
    Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, et al. The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res. 2004;10(20):6946–55.PubMedCrossRefGoogle Scholar
  69. 69.
    Luo G, Huang S, Xie X, Stockert E, Chen YT, Kubuschok B, et al. Expression of cancer-testis genes in human hepatocellular carcinomas. Cancer Immun. 2002;2:11.PubMedGoogle Scholar
  70. 70.
    Korangy F, Ormandy LA, Bleck JS, Klempnauer J, Wilkens L, Manns MP, et al. Spontaneous tumor-specific humoral and cellular immune responses to NY-ESO-1 in hepatocellular carcinoma. Clin Cancer Res. 2004;10(13):4332–41.PubMedCrossRefGoogle Scholar
  71. 71.
    Zhang HH, Mei MH, Fei R, Liao WJ, Wang XY, Qin LL, et al. Regulatory T cell depletion enhances tumor specific CD8 T-cell responses, elicited by tumor antigen NY-ESO-1b in hepatocellular carcinoma patients, in vitro. Int J Oncol. 2010;36(4):841–8.PubMedGoogle Scholar
  72. 72.
    Bricard G, Bouzourene H, Martinet O, Rimoldi D, Halkic N, Gillet M, et al. Naturally acquired MAGE-A10- and SSX-2-specific CD8+ T cell responses in patients with hepatocellular carcinoma. J Immunol. 2005;174(3):1709–16.PubMedCrossRefGoogle Scholar
  73. 73.
    Zerbini A, Pilli M, Soliani P, Ziegler S, Pelosi G, Orlandini A, et al. Ex vivo characterization of tumor-derived melanoma antigen encoding gene-specific CD8+cells in patients with hepatocellular carcinoma. J Hepatol. 2004;40(1):102–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Mizukoshi E, Nakamoto Y, Marukawa Y, Arai K, Yamashita T, Tsuji H, et al. Cytotoxic T cell responses to human telomerase reverse transcriptase in patients with hepatocellular carcinoma. Hepatology. 2006;43(6):1284–94.PubMedCrossRefGoogle Scholar
  75. 75.
    Huang DS, Wang Z, He XJ, Diplas BH, Yang R, Killela PJ, et al. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumour types are associated with increased TERT expression and telomerase activation. Eur J Cancer. 2015;51(8):969–76.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, et al. Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res. 2010;16(9):2518–28.PubMedCrossRefGoogle Scholar
  77. 77.
    Aref AM, Hoa NT, Ge L, Agrawal A, Dacosta-Iyer M, Lambrecht N, et al. HCA519/TPX2: a potential T-cell tumor-associated antigen for human hepatocellular carcinoma. Onco Targets Ther. 2014;7:1061–70.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Ma Y, Lin D, Sun W, Xiao T, Yuan J, Han N, et al. Expression of targeting protein for xklp2 associated with both malignant transformation of respiratory epithelium and progression of squamous cell lung cancer. Clin Cancer Res. 2006;12(4):1121–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Mizukoshi E, Nakagawa H, Kitahara M, Yamashita T, Arai K, Sunagozaka H, et al. Immunological features of T cells induced by human telomerase reverse transcriptase-derived peptides in patients with hepatocellular carcinoma. Cancer Lett. 2015;364(2):98–105.PubMedCrossRefGoogle Scholar
  80. 80.
    Hato T, Goyal L, Greten TF, Duda DG, Zhu AX. Immune checkpoint blockade in hepatocellular carcinoma: current progress and future directions. Hepatology. 2014;60(5):1776–82.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Greten TF, Wang XW, Korangy F. Current concepts of immune based treatments for patients with HCC: from basic science to novel treatment approaches. Gut. 2015;64(5):842–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Romano E, Romero P. The therapeutic promise of disrupting the PD-1/PD-L1 immune checkpoint in cancer: unleashing the CD8 T cell mediated anti-tumor activity results in significant, unprecedented clinical efficacy in various solid tumors. J Immunother Cancer. 2015;3:15.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shi F, Shi M, Zeng Z, Qi RZ, Liu ZW, Zhang JY, et al. PD-1 and PD-L1 upregulation promotes CD8(+) T-cell apoptosis and postoperative recurrence in hepatocellular carcinoma patients. Int J Cancer. 2011;128(4):887–96.PubMedCrossRefGoogle Scholar
  85. 85.
    Wu K, Kryczek I, Chen L, Zou W, Welling TH. Kupffer cell suppression of CD8+ T cells in human hepatocellular carcinoma is mediated by B7-H1/programmed death-1 interactions. Cancer Res. 2009;69(20):8067–75.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med. 2009;206(6):1327–37.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Chen Y, Ramjiawan RR, Reiberger T, Ng MR, Hato T, Huang Y, et al. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice. Hepatology. 2015;61(5):1591–602.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Sangro B, Gomez-Martin C, de la Mata M, Iñarrairaegui M, Garralda E, Barrera P, et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J Hepatol. 2013;59(1):81–8.PubMedCrossRefGoogle Scholar
  89. 89.
    Phase I/II safety and antitumor activity of nivolumab in patients with advanced hepatocellular carcinoma (HCC): CA209–040. | 2015 ASCO Annual Meeting | Abstracts | Meeting Library. 2015. http://meetinglibrary.asco.org/content/146146-156
  90. 90.
    Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 2013;13:5.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Iwashita Y, Tahara K, Goto S, Sasaki A, Kai S, Seike M, et al. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer. Cancer Immunol Immunother. 2003;52(3):155–61.PubMedGoogle Scholar
  92. 92.
    Kumagi T, Akbar SM, Horiike N, Kurose K, Hirooka M, Hiraoka A, et al. Administration of dendritic cells in cancer nodules in hepatocellular carcinoma. Oncol Rep. 2005;14(4):969–73.PubMedGoogle Scholar
  93. 93.
    Palmer DH, Midgley RS, Mirza N, Torr EE, Ahmed F, Steele JC, et al. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 2009;49(1):124–32.PubMedCrossRefGoogle Scholar
  94. 94.
    Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Mukaida N, Matsushima K, et al. Enhancement of tumor-specific T-cell responses by transcatheter arterial embolization with dendritic cell infusion for hepatocellular carcinoma. Int J Cancer. 2010;126(9):2164–74.PubMedGoogle Scholar
  95. 95.
    Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med. 2013;19(3):329–36.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Woller N, Knocke S, Mundt B, Gürlevik E, Strüver N, Kloos A, et al. Virus-induced tumor inflammation facilitates effective DC cancer immunotherapy in a Treg-dependent manner in mice. J Clin Invest. 2011;121(7):2570–82.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L, et al. Development of a listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene. 2012;31(17):2140–52.PubMedCrossRefGoogle Scholar
  98. 98.
    Butterfield LH, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med. 2014;12:86.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther. 2012;20(4):749–58.PubMedCrossRefGoogle Scholar
  100. 100.
    Heo J, Breitbach CJ, Moon A, Kim CW, Patt R, Kim MK, et al. Sequential therapy with JX-594, a targeted oncolytic poxvirus, followed by sorafenib in hepatocellular carcinoma: preclinical and clinical demonstration of combination efficacy. Mol Ther. 2011;19(6):1170–9.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Hepatocellular Carcinoma Study Comparing Vaccinia Virus Based Immunotherapy Plus Sorafenib vs Sorafenib Alone - Full Text View - ClinicalTrials.gov. 2015. https://www.clinicaltrials.gov/ct2/show/NCT02562755?term=Hepatocellular+carcinoma+immunotherapy&rank=3
  102. 102.
    Iwanaga T. [Studies on cases of spontaneous regression of cancer in Japan in 2011, and of hepatic carcinoma, lung cancer and pulmonary metastases in the world between 2006 and 2011]. Gan To Kagaku Ryoho. 2013;40(11):1475–87.Google Scholar
  103. 103.
    Ayaru L, Pereira SP, Alisa A, Pathan AA, Williams R, Davidson B, et al. Unmasking of alpha-fetoprotein-specific CD4(+) T cell responses in hepatocellular carcinoma patients undergoing embolization. J Immunol. 2007;178(3):1914–22.PubMedCrossRefGoogle Scholar
  104. 104.
    Zerbini A, Pilli M, Fagnoni F, Pelosi G, Pizzi MG, Schivazappa S, et al. Increased immunostimulatory activity conferred to antigen-presenting cells by exposure to antigen extract from hepatocellular carcinoma after radiofrequency thermal ablation. J Immunother. 2008;31(3):271–82.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joydeep Chakraborty
    • 1
  • Eric Hilgenfeldt
    • 2
  • Roniel Cabrera
    • 1
    Email author
  1. 1.Division of Gastroenterology, Hepatology, and NutritionUniversity of FloridaGainesvilleUSA
  2. 2.Division of Gastroenterology, Department of Internal MedicineCarolinas Medical CenterCharlotteUSA

Personalised recommendations