Skip to main content

Etiology and Pathogenesis of Hepatocellular Carcinoma

  • Chapter
  • First Online:
Book cover Precision Molecular Pathology of Liver Cancer

Abstract

Throughout the world, hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths. This chapter summarizes the etiology and pathogenesis of HCC. There are various risk factors associated with HCC including viral hepatitis, cirrhosis (with any underlying etiology including nonalcoholic fatty liver disease (NAFLD)), and toxin-mediated disease. The two main hepatitis viruses associated with the development of HCC are hepatitis B virus (HBV) and hepatitis C virus (HCV). Virtually all cirrhosis-inducing conditions can increase the risk of HCC. There are other etiological factors that have been proposed to develop into HCC but at a much lower frequency. As we continue to further our understanding of human HCC and the mechanisms involved, the field will gain a solid foundation that can help to refine animal models and truly comprehend the entire range of human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Singal AG, El-Serag HB. Hepatocellular carcinoma from epidemiology to prevention: translating knowledge into practice. Clin Gastroenterol Hepatol. 2015;13(12):2140–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Njei B, Rotman Y, Ditah I, Lim JK. Emerging trends in hepatocellular carcinoma incidence and mortality. Hepatology. 2015;61(1):191–9.

    Article  PubMed  Google Scholar 

  3. El-Serag HB, Kanwal F. Epidemiology of hepatocellular carcinoma in the United States: where are we? Where do we go? Hepatology. 2014;60(5):1767–75.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674–87.

    Article  CAS  PubMed  Google Scholar 

  5. Nault J-C. Pathogenesis of hepatocellular carcinoma according to aetiology. Best Pract Res Clin Gastroenterol. 2014;28(5):937–47.

    Article  CAS  PubMed  Google Scholar 

  6. Khan FZ, Perumpail RB, Wong RJ, Ahmed A. Advances in hepatocellular carcinoma: nonalcoholic steatohepatitis-related hepatocellular carcinoma. World J Hepatol. 2015;7(18):2155–61.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149(5):1226–39.e4.

    Article  CAS  PubMed  Google Scholar 

  8. Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J Viral Hepat. 2004;11(2):97–107.

    Article  CAS  PubMed  Google Scholar 

  9. Wong GL. Optimal surveillance program for hepatocellular carcinoma—getting ready, but not yet. World J Hepatol. 2015;7(18):2133–5.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen CJ, Yang HI, Su J, Jen CL, You SL, Lu SN, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006;295(1):65–73.

    Article  CAS  PubMed  Google Scholar 

  11. Chisari FV. Unscrambling hepatitis C virus-host interactions. Nature. 2005;436(7053):930–2.

    Article  CAS  PubMed  Google Scholar 

  12. Bowen DG, Walker CM. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature. 2005;436(7053):946–52.

    Article  CAS  PubMed  Google Scholar 

  13. Onofrey S, Aneja J, Haney GA, Nagami EH, DeMaria A, Lauer GM, et al. Underascertainment of acute hepatitis C virus infections in the U.S. surveillance system: a case series and chart review. Ann Intern Med. 2015;163(4):254–61.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Murakami Y, Saigo K, Takashima H, Minami M, Okanoue T, Bréchot C, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut. 2005;54(8):1162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feitelson MA, Sun B, Satiroglu Tufan NL, Liu J, Pan J, Lian Z. Genetic mechanisms of hepatocarcinogenesis. Oncogene. 2002;21(16):2593–604.

    Article  CAS  PubMed  Google Scholar 

  16. Tarn C, Lee S, Hu Y, Ashendel C, Andrisani OM. Hepatitis B virus X protein differentially activates RAS-RAF-MAPK and JNK pathways in X-transforming versus non-transforming AML12 hepatocytes. J Biol Chem. 2001;276(37):34671–80.

    Article  CAS  PubMed  Google Scholar 

  17. Park YM. Clinical utility of complex mutations in the core promoter and proximal precore regions of the hepatitis B virus genome. World J Hepatol. 2015;7(1):113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baran B. Nucleos(t)ide analogs in the prevention of hepatitis B virus related hepatocellular carcinoma. World J Hepatol. 2015;7(13):1742–54.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Galli A, Svegliati-Baroni G, Ceni E, Milani S, Ridolfi F, Salzano R, et al. Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology. 2005;41(5):1074–84.

    Article  CAS  PubMed  Google Scholar 

  20. Lok AS, Heathcote EJ, Hoofnagle JH. Management of hepatitis B: 2000—summary of a workshop. Gastroenterology. 2001;120(7):1828–53.

    Article  CAS  PubMed  Google Scholar 

  21. Lee JE, Oh BK, Choi J, Park YN. Telomeric 3′ overhangs in chronic HBV-related hepatitis and hepatocellular carcinoma. Int J Cancer. 2008;123(2):264–72.

    Article  CAS  PubMed  Google Scholar 

  22. Tada T, Kumada T, Toyoda H, Kiriyama S, Tanikawa M, Hisanaga Y, et al. Long-term prognosis of patients with chronic hepatitis C who did not receive interferon-based therapy: causes of death and analysis based on the FIB-4 index. J Gastroenterol. 2016;51(4):380–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rehermann B, Bertoletti A. Immunological aspects of antiviral therapy of chronic hepatitis B virus and hepatitis C virus infections. Hepatology. 2015;61(2):712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol. 2005;5(3):215–29.

    Article  CAS  PubMed  Google Scholar 

  25. Kogiso T, Hashimoto E, Ikarashi Y, Kodama K, Taniai M, Torii N, et al. Spontaneous clearance of HCV accompanying hepatitis after liver transplantation. Clin J Gastroenterol. 2015.

    Google Scholar 

  26. Pachiadakis I, Pollara G, Chain BM, Naoumov NV. Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence? Lancet Infect Dis. 2005;5(5):296–304.

    Article  PubMed  Google Scholar 

  27. Melén K, Fagerlund R, Nyqvist M, Keskinen P, Julkunen I. Expression of hepatitis C virus core protein inhibits interferon-induced nuclear import of STATs. J Med Virol. 2004;73(4):536–47.

    Article  PubMed  CAS  Google Scholar 

  28. Park KJ, Choi SH, Choi DH, Park JM, Yie SW, Lee SY, et al. 1Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J Biol Chem. 2003;278(33):30711–8.

    Article  CAS  PubMed  Google Scholar 

  29. Foy E, Li K, Sumpter R, Loo YM, Johnson CL, Wang C, et al. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc Natl Acad Sci U S A. 2005;102(8):2986–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC, Ikeda M, et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A. 2005;102(8):2992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen WC, Tseng CK, Chen YH, Lin CK, Hsu SH, Wang SN, et al. HCV NS5A up-regulates COX-2 expression via IL-8-mediated activation of the ERK/JNK MAPK pathway. PLoS One. 2015;10(7):e0133264.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Dixit U, Pandey AK, Liu Z, Kumar S, Neiditch MB, Klein KM, et al. FUSE binding protein 1 facilitates persistent hepatitis C virus replication in hepatoma cells by regulating tumor suppressor p53. J Virol. 2015;89(15):7905–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. EI-Emshaty HM, Gadelhak SA, Abdelaziz MM, Abbas AT, Gadelhak NA. Serum P53 Abs in HCC patients with viral hepatitis—type C. Hepatogastroenterology. 2014;61(134):1688–95.

    PubMed  Google Scholar 

  34. Moriya K, Nakagawa K, Santa T, Shintani Y, Fujie H, Miyoshi H, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus-associated hepatocarcinogenesis. Cancer Res. 2001;61(11):4365–70.

    CAS  PubMed  Google Scholar 

  35. Raff EJ, Kakati D, Bloomer JR, Shoreibah M, Rasheed K, Singal AK. Diabetes mellitus predicts occurrence of cirrhosis and hepatocellular cancer in alcoholic liver and non-alcoholic fatty liver diseases. J Clin Transl Hepatol. 2015;3(1):9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berzigotti A, Saran U, Dufour JF. Physical activity and liver diseases. Hepatology. 2016;63(3):1026–40.

    Article  CAS  PubMed  Google Scholar 

  37. Perumpail RB, Wong RJ, Ahmed A, Harrison SA. Hepatocellular carcinoma in the setting of non-cirrhotic nonalcoholic fatty liver disease and the metabolic syndrome: US experience. Dig Dis Sci. 2015;60(10):3142–8.

    Article  CAS  PubMed  Google Scholar 

  38. Dongiovanni P, Romeo S, Valenti L. Genetic factors in the pathogenesis of nonalcoholic fatty liver and steatohepatitis. Biomed Res Int. 2015;2015:460190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Stickel F, Hellerbrand C. Non-alcoholic fatty liver disease as a risk factor for hepatocellular carcinoma: mechanisms and implications. Gut. 2010;59(10):1303–7.

    Article  CAS  PubMed  Google Scholar 

  40. Marra F, Gastaldelli A, Svegliati Baroni G, Tell G, Tiribelli C. Molecular basis and mechanisms of progression of non-alcoholic steatohepatitis. Trends Mol Med. 2008;14(2):72–81.

    Article  CAS  PubMed  Google Scholar 

  41. Bougoulia M, Triantos A, Koliakos G. Effect of weight loss with or without orlistat treatment on adipocytokines, inflammation, and oxidative markers in obese women. Hormones (Athens). 2006;5(4):259–69.

    Article  Google Scholar 

  42. Zhao H, Guo Y, Li S, Han R, Ying J, Zhu H, et al. A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget. 2015;6(31):31927–43.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sasaki Y. Insulin resistance and hepatocarcinogenesis. Clin J Gastroenterol. 2010;3(6):271–8.

    Article  PubMed  Google Scholar 

  44. Chang Q, Zhang Y, Beezhold KJ, Bhatia D, Zhao H, Chen J, et al. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. J Hepatol. 2009;50(2):323–33.

    Article  CAS  PubMed  Google Scholar 

  45. Nault JC, Calderaro J, Di Tommaso L, Balabaud C, Zafrani ES, Bioulac-Sage P, et al. Telomerase reverse transcriptase promoter mutation is an early somatic genetic alteration in the transformation of premalignant nodules in hepatocellular carcinoma on cirrhosis. Hepatology. 2014;60(6):1983–92.

    Article  CAS  PubMed  Google Scholar 

  46. Raffetti E, Portolani N, Molfino S, Baiocchi GL, Limina RM, Caccamo G, et al. Role of aetiology, diabetes, tobacco smoking and hypertension in hepatocellular carcinoma survival. Dig Liver Dis. 2015;47(11):950–6.

    Article  CAS  PubMed  Google Scholar 

  47. McClain CJ, Hill DB, Song Z, Deaciuc I, Barve S. Monocyte activation in alcoholic liver disease. Alcohol. 2002;27(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  48. Wang F, Yang JL, Yu KK, Xu M, Xu YZ, Chen L, et al. Activation of the NF-κB pathway as a mechanism of alcohol enhanced progression and metastasis of human hepatocellular carcinoma. Mol Cancer. 2015;14:10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kawaguchi Y, Mizuta T. Interaction between hepatitis C virus and metabolic factors. World J Gastroenterol. 2014;20(11):2888–901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Osna NA, Clemens DL, Donohue TM. Ethanol metabolism alters interferon gamma signaling in recombinant HepG2 cells. Hepatology. 2005;42(5):1109–17.

    Article  CAS  PubMed  Google Scholar 

  51. Takaki A, Yamamoto K. Control of oxidative stress in hepatocellular carcinoma: helpful or harmful? World J Hepatol. 2015;7(7):968–79.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Campbell JS, Hughes SD, Gilbertson DG, Palmer TE, Holdren MS, Haran AC, et al. Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. Proc Natl Acad Sci U S A. 2005;102(9):3389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Comporti M, Arezzini B, Signorini C, Sgherri C, Monaco B, Gardi C. F2-isoprostanes stimulate collagen synthesis in activated hepatic stellate cells: a link with liver fibrosis? Lab Invest. 2005;85(11):1381–91.

    Article  CAS  PubMed  Google Scholar 

  54. Thompson AI, Conroy KP, Henderson NC. Hepatic stellate cells: central modulators of hepatic carcinogenesis. BMC Gastroenterol. 2015;15:63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Kew MC. Aflatoxins as a cause of hepatocellular carcinoma. J Gastrointestin Liver Dis. 2013;22(3):305–10.

    PubMed  Google Scholar 

  56. Riley J, Mandel HG, Sinha S, Judah DJ, Neal GE. In vitro activation of the human Harvey-ras proto-oncogene by aflatoxin B1. Carcinogenesis. 1997;18(5):905–10.

    Article  CAS  PubMed  Google Scholar 

  57. De Minicis S, Marzioni M, Benedetti A, Svegliati-Baroni G. New insights in hepatocellular carcinoma: from bench to bedside. Ann Transl Med. 2013;1(2):15.

    PubMed  PubMed Central  Google Scholar 

  58. Kew MC. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int. 2003;23(6):405–9.

    Article  CAS  PubMed  Google Scholar 

  59. Hao PP, Li H, Lee MJ, Wang YP, Kim JH, Yu GR, et al. Disruption of a regulatory loop between DUSP1 and p53 contributes to hepatocellular carcinoma development and progression. J Hepatol. 2015;62(6):1278–86.

    Article  CAS  PubMed  Google Scholar 

  60. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, et al. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14(2):156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lachenmayer A, Alsinet C, Chang CY, Llovet JM. Molecular approaches to treatment of hepatocellular carcinoma. Dig Liver Dis. 2010;42(Suppl 3):S264–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Calvisi DF, Ladu S, Gorden A, Farina M, Conner EA, Lee JS, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130(4):1117–28.

    Article  CAS  PubMed  Google Scholar 

  63. Torimura T, Sata M, Ueno T, Kin M, Tsuji R, Suzaku K, et al. Increased expression of vascular endothelial growth factor is associated with tumor progression in hepatocellular carcinoma. Hum Pathol. 1998;29(9):986–91.

    Article  CAS  PubMed  Google Scholar 

  64. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res. 2001;49(3):507–21.

    Article  CAS  PubMed  Google Scholar 

  65. Huynh H. Molecularly targeted therapy in hepatocellular carcinoma. Biochem Pharmacol. 2010;80(5):550–60.

    Article  CAS  PubMed  Google Scholar 

  66. Hlady RA, Tiedemann RL, Puszyk W, Zendejas I, Roberts LR, Choi JH, et al. Epigenetic signatures of alcohol abuse and hepatitis infection during human hepatocarcinogenesis. Oncotarget. 2014;5(19):9425–43.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sakamoto M. Pathology of early hepatocellular carcinoma. Hepatol Res. 2007;37(Suppl 2):S135–8.

    Article  PubMed  Google Scholar 

  68. Sciarra A, Di Tommaso L, Nakano M, Destro A, Torzilli G, Donadon M, et al. Morphophenotypic changes in human multistep hepatocarcinogenesis with translational implications. J Hepatol. 2016;64(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  69. Lu XF, Zhou YJ, Zhang L, Ji HJ, Li L, Shi YJ, et al. Loss of Dicer1 impairs hepatocyte survival and leads to chronic inflammation and progenitor cell activation. World J Gastroenterol. 2015;21(21):6591–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hsieh YH, Chang YY, Su IJ, Yen CJ, Liu YR, Liu RJ, et al. Hepatitis B virus pre-S2 mutant large surface protein inhibits DNA double-strand break repair and leads to genome instability in hepatocarcinogenesis. J Pathol. 2015;236(3):337–47.

    Article  CAS  PubMed  Google Scholar 

  71. Nishida N, Kudo M. Alteration of epigenetic profile in human hepatocellular carcinoma and its clinical implications. Liver Cancer. 2014;3(3–4):417–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fan H, Zhao Z, Cheng Y, Cui H, Qiao F, Wang L, et al. Genome-wide profiling of DNA methylation reveals preferred sequences of DNMTs in hepatocellular carcinoma cells. Tumour Biol. 2016;37(1):877–85.

    Article  CAS  PubMed  Google Scholar 

  73. Lee S, Lee HJ, Kim JH, Lee HS, Jang JJ, Kang GH. Aberrant CpG island hypermethylation along multistep hepatocarcinogenesis. Am J Pathol. 2003;163(4):1371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Murata H, Tsuji S, Tsujii M, Sakaguchi Y, Fu HY, Kawano S, et al. Promoter hypermethylation silences cyclooxygenase-2 (Cox-2) and regulates growth of human hepatocellular carcinoma cells. Lab Invest. 2004;84(8):1050–9.

    Article  CAS  PubMed  Google Scholar 

  75. Kubo T, Yamamoto J, Shikauchi Y, Niwa Y, Matsubara K, Yoshikawa H. Apoptotic speck protein-like, a highly homologous protein to apoptotic speck protein in the pyrin domain, is silenced by DNA methylation and induces apoptosis in human hepatocellular carcinoma. Cancer Res. 2004;64(15):5172–7.

    Article  CAS  PubMed  Google Scholar 

  76. Wong CM, Lee JM, Ching YP, Jin DY, Ng IO. Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Res. 2003;63(22):7646–51.

    CAS  PubMed  Google Scholar 

  77. Maeta Y, Shiota G, Okano J, Murawaki Y. Effect of promoter methylation of the p16 gene on phosphorylation of retinoblastoma gene product and growth of hepatocellular carcinoma cells. Tumour Biol. 2005;26(6):300–5.

    Article  CAS  PubMed  Google Scholar 

  78. Villanueva A, Newell P, Chiang DY, Friedman SL, Llovet JM. Genomics and signaling pathways in hepatocellular carcinoma. Semin Liver Dis. 2007;27(1):55–76.

    Article  CAS  PubMed  Google Scholar 

  79. Vacchelli E, Pol J, Bloy N, Eggermont A, Cremer I, Fridman WH, et al. Trial watch: tumor-targeting monoclonal antibodies for oncological indications. Oncoimmunology. 2015;4(1):e985940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Perini MV, Starkey G, Fink MA, Bhandari R, Muralidharan V, Jones R, et al. From minimal to maximal surgery in the treatment of hepatocarcinoma: a review. World J Hepatol. 2015;7(1):93–100.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Daveau M, Scotte M, François A, Coulouarn C, Ros G, Tallet Y, et al. Hepatocyte growth factor, transforming growth factor alpha, and their receptors as combined markers of prognosis in hepatocellular carcinoma. Mol Carcinog. 2003;36(3):130–41.

    Article  CAS  PubMed  Google Scholar 

  82. Sakata H, Rubin JS, Taylor WG, Miki T. A Rho-specific exchange factor Ect2 is induced from S to M phases in regenerating mouse liver. Hepatology. 2000;32(2):193–9.

    Article  CAS  PubMed  Google Scholar 

  83. Horiguchi N, Takayama H, Toyoda M, Otsuka T, Fukusato T, Merlino G, et al. Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene. 2002;21(12):1791–9.

    Article  CAS  PubMed  Google Scholar 

  84. Breuhahn K, Longerich T, Schirmacher P. Dysregulation of growth factor signaling in human hepatocellular carcinoma. Oncogene. 2006;25(27):3787–800.

    Article  CAS  PubMed  Google Scholar 

  85. Bekaii-Saab T, Williams N, Plass C, Calero MV, Eng C. A novel mutation in the tyrosine kinase domain of ERBB2 in hepatocellular carcinoma. BMC Cancer. 2006;6:278.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ito Y, Takeda T, Sakon M, Tsujimoto M, Higashiyama S, Noda K, et al. Expression and clinical significance of erb-B receptor family in hepatocellular carcinoma. Br J Cancer. 2001;84(10):1377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Berasain C, Avila MA. The EGFR signalling system in the liver: from hepatoprotection to hepatocarcinogenesis. J Gastroenterol. 2014;49(1):9–23.

    Article  CAS  PubMed  Google Scholar 

  88. Höpfner M, Sutter AP, Huether A, Schuppan D, Zeitz M, Scherübl H. Targeting the epidermal growth factor receptor by gefitinib for treatment of hepatocellular carcinoma. J Hepatol. 2004;41(6):1008–16.

    Article  PubMed  CAS  Google Scholar 

  89. Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, et al. Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol. 2005;23(27):6657–63.

    Article  CAS  PubMed  Google Scholar 

  90. Jhappan C, Stahle C, Harkins RN, Fausto N, Smith GH, Merlino GT. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell. 1990;61(6):1137–46.

    Article  CAS  PubMed  Google Scholar 

  91. Sandgren EP, Luetteke NC, Palmiter RD, Brinster RL, Lee DC. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell. 1990;61(6):1121–35.

    Article  CAS  PubMed  Google Scholar 

  92. Webber EM, Wu JC, Wang L, Merlino G, Fausto N. Overexpression of transforming growth factor-alpha causes liver enlargement and increased hepatocyte proliferation in transgenic mice. Am J Pathol. 1994;145(2):398–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Russell WE, Kaufmann WK, Sitaric S, Luetteke NC, Lee DC. Liver regeneration and hepatocarcinogenesis in transforming growth factor-alpha-targeted mice. Mol Carcinog. 1996;15(3):183–9.

    Article  CAS  PubMed  Google Scholar 

  94. Lee SY, Song KH, Koo I, Lee KH, Suh KS, Kim BY. Comparison of pathways associated with hepatitis B- and C-infected hepatocellular carcinoma using pathway-based class discrimination method. Genomics. 2012;99(6):347–54.

    Article  CAS  PubMed  Google Scholar 

  95. Mínguez B, Tovar V, Chiang D, Villanueva A, Llovet JM. Pathogenesis of hepatocellular carcinoma and molecular therapies. Curr Opin Gastroenterol. 2009;25(3):186–94.

    Article  PubMed  CAS  Google Scholar 

  96. Taniguchi K, Roberts LR, Aderca IN, Dong X, Qian C, Murphy LM, et al. Mutational spectrum of beta-catenin, AXIN1, and AXIN2 in hepatocellular carcinomas and hepatoblastomas. Oncogene. 2002;21(31):4863–71.

    Article  CAS  PubMed  Google Scholar 

  97. Sempoux C, Paradis V, Komuta M, Wee A, Calderaro J, Balabaud C, et al. Hepatocellular nodules expressing markers of hepatocellular adenomas in Budd-Chiari syndrome and other rare hepatic vascular disorders. J Hepatol. 2015;63(5):1173–80.

    Article  CAS  PubMed  Google Scholar 

  98. Thorgeirsson SS, Grisham JW. Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet. 2002;31(4):339–46.

    Article  CAS  PubMed  Google Scholar 

  99. Peng SY, Chen WJ, Lai PL, Jeng YM, Sheu JC, Hsu HC. High alpha-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: significance of hepatitis virus infection, age, p53 and beta-catenin mutations. Int J Cancer. 2004;112(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  100. Wang XH, Meng XW, Sun X, DU YJ, Zhao J, Fan YJ. Wnt/b-catenin signaling pathway affects the protein expressions of caspase-3, XIAP and Grp-78 in hepatocellular carcinoma. Zhonghua Gan Zang Bing Za Zhi. 2011;19(8):599–602.

    CAS  PubMed  Google Scholar 

  101. Yam JW, Wong CM, Ng IO. Molecular and functional genetics of hepatocellular carcinoma. Front Biosci (Schol Ed). 2010;2:117–34.

    Google Scholar 

  102. Cha MY, Kim CM, Park YM, Ryu WS. Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology. 2004;39(6):1683–93.

    Article  CAS  PubMed  Google Scholar 

  103. Prange W, Breuhahn K, Fischer F, Zilkens C, Pietsch T, Petmecky K, et al. Beta-catenin accumulation in the progression of human hepatocarcinogenesis correlates with loss of E-cadherin and accumulation of p53, but not with expression of conventional WNT-1 target genes. J Pathol. 2003;201(2):250–9.

    Article  CAS  PubMed  Google Scholar 

  104. Gross-Goupil M, Riou P, Emile JF, Saffroy R, Azoulay D, Lacherade I, et al. Analysis of chromosomal instability in pulmonary or liver metastases and matched primary hepatocellular carcinoma after orthotopic liver transplantation. Int J Cancer. 2003;104(6):745–51.

    Article  CAS  PubMed  Google Scholar 

  105. Calvisi DF, Factor VM, Ladu S, Conner EA, Thorgeirsson SS. Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology. 2004;126(5):1374–86.

    Article  CAS  PubMed  Google Scholar 

  106. You J, Yang H, Lai Y, Simon L, Au J, Burkart AL. ARID2, p110α, p53, and β-catenin protein expression in hepatocellular carcinoma and clinicopathologic implications. Hum Pathol. 2015;46(7):1068–77.

    Article  PubMed  Google Scholar 

  107. Kim CM, Koike K, Saito I, Miyamura T, Jay G. HBx gene of hepatitis B virus induces liver cancer in transgenic mice. Nature. 1991;351(6324):317–20.

    Article  CAS  PubMed  Google Scholar 

  108. Wu H, Ng R, Chen X, Steer CJ, Song G. MicroRNA-21 is a potential link between non-alcoholic fatty liver disease and hepatocellular carcinoma via modulation of the HBP1-p53-Srebp1c pathway. Gut. 2016;65(11):1850–60.

    Article  PubMed  Google Scholar 

  109. Minouchi K, Kaneko S, Kobayashi K. Mutation of p53 gene in regenerative nodules in cirrhotic liver. J Hepatol. 2002;37(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  110. Honda M, Takehana K, Sakai A, Tagata Y, Shirasaki T, Nishitani S, et al. Malnutrition impairs interferon signaling through mTOR and FoxO pathways in patients with chronic hepatitis C. Gastroenterology. 2011;141(1):128–40, 40.e1–2.

    Google Scholar 

  111. Aguilar F, Harris CC, Sun T, Hollstein M, Cerutti P. Geographic variation of p53 mutational profile in nonmalignant human liver. Science. 1994;264(5163):1317–9.

    Article  CAS  PubMed  Google Scholar 

  112. Gori M, Barbaro B, Arciello M, Maggio R, Viscomi C, Longo A, et al. Protective effect of the Y220C mutant p53 against steatosis: good news? J Cell Physiol. 2014;229(9):1182–92.

    Article  CAS  PubMed  Google Scholar 

  113. Kew MC. The role of cirrhosis in the etiology of hepatocellular carcinoma. J Gastrointest Cancer. 2014;45(1):12–21.

    Article  CAS  PubMed  Google Scholar 

  114. Farazi PA, Glickman J, Horner J, Depinho RA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Cancer Res. 2006;66(9):4766–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo Soldevila-Pico M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Brar, T.S., Hilgenfeldt, E., Soldevila-Pico, C. (2018). Etiology and Pathogenesis of Hepatocellular Carcinoma. In: Liu, C. (eds) Precision Molecular Pathology of Liver Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-68082-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68082-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68080-4

  • Online ISBN: 978-3-319-68082-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics