Fairness in Revenue Sharing for Stable Cloud Federations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10537)


A cloud federation is a platform, on which a number of cloud service providers (CSPs) builds an alliance and cooperates to share cloud resources. It is an appropriate way to address cloud elasticity needs. It expands resources beyond the limited capacity of a single CSP. It also helps maximizing profit for any CSP by improving the utilization of their resources. An alliance can be formed, only if potential members (CSPs) see marginal benefits in joining a federation. Once the alliance is formed, a fair distribution of revenue among the members of the alliance becomes important for the alliance to sustain. The distribution can be proportional to the contribution to the alliance. This paper analyzes the Shapley value method as a revenue sharing model for cloud federations. Our simulation results of the model show that the model increases the revenue for the federation due to the aggregation of spare capacity. The model provides a fair distribution of the revenue to the members of the federation, improving the stability of cloud federations.


Cloud computing Cloud federation Resource sharing Revenue sharing model 



The research was conducted within the project BASMATI (Cloud Brokerage Across Borders for Mobile Users and Applications), which was supported from the ICT R&D program of the Korean MSIT/IITP [R0115-16-0001].


  1. 1.
    Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In: INC, IMS and IDC, pp. 44–51 (2009)Google Scholar
  2. 2.
    Mustafa, S., Nazir, B., Hayat, A., Khan, A.U.R., Madani, S.A.: Resource management in cloud computing: taxonomy, prospects, and challenges. Comput. Electr. Eng. 47, 186–203 (2015)CrossRefGoogle Scholar
  3. 3.
    Venters, W., Whitley, E.A.: A critical review of cloud computing: researching desires and realities. J. Inf. Technol. 27(3), 179–197 (2012)CrossRefGoogle Scholar
  4. 4.
    Mell, P., Grance, T.: The NIST definition of cloud computing (2011)Google Scholar
  5. 5.
    Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federations in the sky: formation game and mechanism. IEEE Trans. Cloud Comput. 3(1), 14–27 (2015)CrossRefGoogle Scholar
  6. 6.
    Ranger, S.: AWS dominates cloud computing infrastructure market, bigger than IBM/Google/Microsoft combined (2017). Accessed July 2017
  7. 7.
    Kim, K., Kang, S., Altmann, J.: Cloud goliath versus a federation of cloud davids. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2014. LNCS, vol. 8914, pp. 55–66. Springer, Cham (2014). doi: 10.1007/978-3-319-14609-6_4 Google Scholar
  8. 8.
    Hassan, M.M., Al-Wadud, M.A., Fortino, G.: A socially optimal resource and revenue sharing mechanism in cloud federations. In: CSCWD, 19th International Conference on Computer Supported Cooperative Work in Design. IEEE (2015)Google Scholar
  9. 9.
    Lu, Z., Wen, X., Sun, Y.: A game theory based resource sharing scheme in cloud computing environment. In: WICT, World Congress on Information and Communication Technology (2012)Google Scholar
  10. 10.
    Li, H., Wu, C., Li, Z., Lau, F.C.M.: Profit-maximizing virtual machine trading in a federation of selfish clouds. In: INFOCOM. IEEE (2013)Google Scholar
  11. 11.
    Samaan, N.: A novel economic sharing model in a federation of selfish cloud providers. IEEE Trans. Parallel Distrib. Syst. 25(1), 12–21 (2014)CrossRefGoogle Scholar
  12. 12.
    Jackson, M.O., Leyton-Brown, K., Shoham, Y.: Game Theory Online (2016). Accessed July 2017
  13. 13.
    Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: utility-oriented federation of cloud computing environments for scaling of application services. In: Hsu, C.-H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010. LNCS, vol. 6081, pp. 13–31. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13119-6_2 CrossRefGoogle Scholar
  14. 14.
    Chauhan, S.S., Pilli, E.S., Joshi, R.: A broker based framework for federated cloud environment. In: ETCT, International Conference on Emerging Trends in Communic Technology. IEEE (2016)Google Scholar
  15. 15.
    Kashef, M.M., Altmann, J.: A cost model for hybrid clouds. In: Vanmechelen, K., Altmann, J., Rana, O.F. (eds.) GECON 2011. LNCS, vol. 7150, pp. 46–60. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28675-9_4 CrossRefGoogle Scholar
  16. 16.
    Darzanos, G., Koutsopoulos, I., Stamoulis, G.D.: Economics models and policies for cloud federations. In: IFIP Networking Conference and Workshops. IEEE (2016)Google Scholar
  17. 17.
    Messina, F., Pappalardo, G., Santoro, C., Rosaci, D., Sarné, G.M.L.: A multi-agent protocol for service level agreement negotiation in cloud federations. Int. J. Grid Util. Comput. 7(2), 101–112 (2016)CrossRefGoogle Scholar
  18. 18.
    Hadji, M., Aupetit, B., Zeghlache, D.: Cost-efficient algorithms for critical resource allocation in cloud federations. In: Cloudnet, International Conference on Cloud Networking. IEEE (2016)Google Scholar
  19. 19.
    Goiri, Í., Guitart, J., Torres, J.: Economic model of a cloud provider operating in a federated cloud. Inf. Syst. Front. 14(4), 827–843 (2012)CrossRefGoogle Scholar
  20. 20.
    Bouabdallah, R., Lajmi, S., Ghedira, K.: Resources provisioning within cloud federation. In: SMC, International Conference on Systems, Man, and Cybernetics. IEEE (2016)Google Scholar
  21. 21.
    Barril, J.F.H., Ruyter, J., Tan, Q.: A view on Internet of things driving cloud federation. In: ICCCBDA, International Conference on Cloud Computing and Big Data Analysis. IEEE (2016)Google Scholar
  22. 22.
    Suzic, B., Prünster, B., Ziegler, D., Marsalek, A., Reiter, A.: Balancing utility and security: securing cloud federations of public entities. In: Debruyne, C., et al. (eds.) OTM 2016 Conferences. LNCS, vol. 10033, pp. 943–961. Springer, Heidelberg (2016)Google Scholar
  23. 23.
    Liu, F., Tong, J., Mao, J., Bohn, R.B., Messina, J.V., Badger, M.L., Leaf, D.M.: NIST cloud computing reference architecture. NIST special publication, report, pp. 500–292 (2011)Google Scholar
  24. 24.
    Winter, E.: The shapley value. In: Handbook of Game Theory with Economic Applications, vol. 3, pp. 2025–2054 (2002)Google Scholar
  25. 25.
    Oreskovic, A.: Amazon isn’t just growing revenue anymore – it’s growing profits (2016). Accessed May 2017
  26. 26.
    Altmann, J., Kashef, M.M.: Cost model based service placement in federated hybrid clouds. Future Gener. Comput. Syst. (2014). doi: 10.1016/j.future.2014.08.014. ElsevierGoogle Scholar
  27. 27.
    Gebregiorgis, S.A., Altmann, J.: IT service platforms: their value creation model and the impact of their level of openness on their adoption. Procedia Comput. Sci 68, 173–187 (2015)CrossRefGoogle Scholar
  28. 28.
    Haile, N., Altmann, J.: Evaluating investments in portability and interoperability between software service platforms. Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.04.040
  29. 29.
    Rohitratana, J., Altmann, J.: Impact of pricing schemes on a market for software-as-a-service and perpetual software. Future Gener. Comput. Syst. 28(8), 1328–1339 (2012). ElsevierCrossRefGoogle Scholar
  30. 30.
    Haile, N., Altmann, J.: Structural analysis of value creation in software service platforms. Electron. Markets (2015). doi: 10.1007/s12525-015-0208-8 Google Scholar
  31. 31.
    Haile, N., Altmann, J.: Value creation in software service platforms. Future Gener. Comput. Syst. (2015). doi: 10.1016/j.future.2015.09.029. Elsevier
  32. 32.
    Kim, K., Altmann, J.: Effect of homophily on network formation. Commun. Nonlinear Sci. Numer. Simul. 44, 482–494 (2017)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Haile, N., Altmann, J.: Estimating the value obtained from using a software service platform. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 244–255. Springer, Cham (2013). doi: 10.1007/978-3-319-02414-1_18 CrossRefGoogle Scholar
  34. 34.
    Altmann, J., Courcoubetis, C., Risch, M.: A marketplace and its market mechanism for trading commoditized computing resources. Ann. des Télécommunications 65, 653–667 (2010)CrossRefGoogle Scholar
  35. 35.
    Altmann, J., Carlini, E., Coppola, M., Dazzi, P., Ferrer, A.J., Haile, N., Jung, Y., Kang, D.-J., Marshall, I.-J., Tserpes, K., Varvarigou, T.: BASMATI - a brokerage architecture on federated clouds for mobile applications. In: CGW, International Workshop, Krakow, Poland (2016)Google Scholar
  36. 36.
    Haile, N., Altmann, J.: Risk-benefit-mediated impact of determinants on the adoption of cloud federation. In: PACIS - Pacific Asia Conference on Information Systems. AIS (2015)Google Scholar
  37. 37.
    Hofäcker, D., Schröder, H., Li, Y., Flynn, M.: Trends and determinants of work-retirement transitions under changing institutional conditions: Germany, England and Japan compared. J. Soc. Policy 45(1), 39–64 (2016)CrossRefGoogle Scholar
  38. 38.
    Jeferry, K., Kousiouris, G., Kyriazis, D., Altmann, J., Ciuffoletti, A., Maglogiannis, I., Nesi, P., Suzic, B., Zhao, Z.: Challenges emerging from future cloud application scenarios. Procedia Comput. Sci. 68, 227–237 (2015)CrossRefGoogle Scholar
  39. 39.
    Ernst, F., Klaus, S.M.: A theory of fairness, competition, and cooperation. Quart. J. Econ. 114(3), 817–868 (1999)CrossRefzbMATHGoogle Scholar
  40. 40.
    Mohammed, A.B., Altmann, J., Hwang, J.: Cloud computing value chains: understanding businesses and value creation in the cloud. In: Neumann, D., Baker, M., Altmann, J., Rana, O. (eds.) Economic Models and Algorithms for Distributed Systems. Autonomic Systems, pp. 187–208. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Technology Management, Economics and Policy Program, College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations