User Behavior and Application Modeling in Decentralized Edge Cloud Infrastructures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10537)


Edge computing has emerged as a solution that can accommodate complex application requirements by shifting data and computation to infrastructure elements that are more suitable to manage them given the current circumstances. The BASMATI Knowledge Extractor is a component that facilitates the modeling of the resource utilization by providing tools to analyze application usage together with user behavior. This is particularly relevant in the case of mobile applications where user context and activity are tightly coupled to the application performance.


Performance modeling Resource utilization User behavior modeling Application usage modeling BASMATI project 



BASMATI ( has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement no. 723131 and from ICT R&D program of Korean Ministry of Science, ICT and Future Planning no. R0115-16-0001.


  1. 1.
    Deeplearning4j: Open-source distributed deep learning for the jvm. Accessed 17 July 17
  2. 2.
    Aisopos, F., Tzannetos, D., Violos, J., Varvarigou, T.A.: Using n-gram graphs for sentiment analysis: an extended study on twitter. In: Second IEEE International Conference on Big Data Computing Service and Applications, BigDataService 2016, Oxford, United Kingdom, March 29 - April 1, 2016, pp. 44–51 (2016).
  3. 3.
    Dutt, S.: New faster kernighan-lin-type graph-partitioning algorithms. In: Proceedings of 1993 International Conference on Computer Aided Design (ICCAD), pp. 370–377, November 1993Google Scholar
  4. 4.
    Edmonds, A., Metsch, T., Papaspyrou, A.: Open cloud computing interface in data management-related setups. In: Fiore, S., Aloisio, G. (eds.) Grid and Cloud Database Management, pp. 23–48. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20045-8_2 CrossRefGoogle Scholar
  5. 5.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4–5), 411–430 (2000)CrossRefGoogle Scholar
  7. 7.
    John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, UAI 1995, pp. 338–345. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar
  8. 8.
    Jolliffe, I.: Principal Component Analysis. Wiley, New York (2014)CrossRefzbMATHGoogle Scholar
  9. 9.
    Juneau, J., Baker, J., Wierzbicki, F., Muoz, L.S., Ng, V., Ng, A., Baker, D.L.: The Definitive Guide to Jython: Python for the Java Platform. Apress, Berkeley (2010)CrossRefGoogle Scholar
  10. 10.
    Kousiouris, G., Menychtas, A., Kyriazis, D., Gogouvitis, S., Varvarigou, T.: Dynamic, behavioral-based estimation of resource provisioning based on high-level application terms in cloud platforms. Future Gener. Comput. Syst. 32, 27–40 (2014)CrossRefGoogle Scholar
  11. 11.
    Luo, R.C., Kay, M.G.: Multisensor integration and fusion in intelligent systems. IEEE Trans. Syst. Man Cybern. 19(5), 901–931 (1989)CrossRefGoogle Scholar
  12. 12.
    Pau, L.F.: Sensor data fusion. J. Intell. Robot. Syst. 1(2), 103–116 (1988)CrossRefGoogle Scholar
  13. 13.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Singla, A., Patra, S., Bruzzone, L.: A novel classification technique based on progressive transductive SVM learning. Pattern Recogn. Lett. 42, 101–106 (2014)CrossRefGoogle Scholar
  15. 15.
    Tserpes, K., Kyriazis, D., Menychtas, A., Varvarigou, T.: A novel mechanism for provisioning of high-level quality of service information in grid environments. Eur. J. Oper. Res. 191(3), 1113–1131 (2008)CrossRefzbMATHGoogle Scholar
  16. 16.
    Violos, J., Tserpes, K., Papaoikonomou, A., Kardara, M., Varvarigou, T.A.: Clustering documents using the 3-gram graph representation model. In: 18th Panhellenic Conference on Informatics, PCI 2014, Athens, Greece, October 2–4, 2014, pp. 29:1–29:5 (2014).
  17. 17.
    Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: PractIcal Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensZografouGreece
  2. 2.Institute of Information Science and TechnologiesNational Research Council of Italy (CNR)PisaItaly
  3. 3.Technology Management, Economics, and Policy Program, College of EngineeringSeoul National UniversitySeoulRepublic of Korea
  4. 4.CAS Software AGKarlsruheGermany
  5. 5.Cloud Computing Research DepartmentElectronics and Telecommunications Research Institute (ETRI)DaejeonRepublic of Korea
  6. 6.Department of Informatics and TelematcsHarokopio University of AthensTavrosGreece

Personalised recommendations