Mechanisms of Action and Immunomodulation by IVIg

  • Alan H. Lazarus


Intravenous immunoglobulin (IVIg) has been e1ectively used as a replacement product for those deficient in IgG as well as for treating a number of autoimmune syndromes. Although the precise mechanism of action of IVIg as an immunomodulatory agent has been elusive, many theories over the years have been postulated. These theories include mononuclear phagocytic system blockade, autoantibody neutralization, increased clearance of pathogenic autoantibodies through the neonatal Fc receptor (FcRn), complement neutralization, modulation of inflammatory and/or anti-inflammatory cytokines, programmed cell death, anti-inflammatory effects mediated through the inhibitory Fc receptor (FcγRIIB), activating Fc receptor-dependent dendritic cell modulation, induction of T regulatory cells and other mechanisms. Some of the key attributes of IVIg which could contribute to some of these mechanisms have included effects mediated through the Fab region of IgG, while others have been through the Fc region of IVIg. The presence of sugars or glycans on the Fc region have been considered by some to be important, while other work has pointed to a major role for IgG dimers or immune complexes as mediating IVIg anti-inflammatory activity. This review will discuss our current understanding of the mechanism of action of IVIg on its immunomodulatory properties in autoimmunity with an emphasis from work performed using murine models of immune thrombocytopenia (ITP). Finally, we will discuss some recent advances in recombinant IVIg alternatives.


  1. Aloulou M, Ben Mkaddem S, Biarnes-Pelicot M, Boussetta T, Souchet H, Rossato E, Benhamou M, Crestani B, Zhu Z, Blank U, Launay P, Monteiro RC. IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses. Blood. 2012;119(13):3084–96.CrossRefPubMedGoogle Scholar
  2. Anthony RM, Ravetch JV. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs. J Clin Immunol. 2010;30(S1):9–14.CrossRefGoogle Scholar
  3. Anthony RM, Kobayashi T, Wermeling F, Ravetch JV. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature. 2011;475(7354):110–3.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aslam R, Burack WR, Segel GB, McVey M, Spence SA, Semple JW. Intravenous immunoglobulin treatment of spleen cells from patients with immune thrombocytopenia significantly increases the percentage of myeloid-derived suppressor cells. Br J Haematol. 2017. [Epub ahead of print].Google Scholar
  5. Aubin E, Lemieux R, Bazin R. Absence of cytokine modulation following therapeutic infusion of intravenous immunoglobulin or anti-red blood cell antibodies in a mouse model of immune thrombocytopenic purpura. Br J Haematol. 2007;136(6):837–43.CrossRefPubMedGoogle Scholar
  6. Aukrust P, Frøland SS, Liabakk NB, Müller F, Nordøy I, Haug C, Espevik T. Release of cytokines, soluble cytokine receptors, and interleukin-1 receptor antagonist after intravenous immunoglobulin administration in vivo. Blood. 1994;84(7):2136–43.PubMedGoogle Scholar
  7. Barbano G, Saleh MN, Mori PG, LoBuglio AF, Shaw DR. Effect of intravenous gammaglobulin on circulating and platelet-bound antibody in immune thrombocytopenia. Blood. 1989;73(3):662–5.PubMedGoogle Scholar
  8. Berchtold P, Dale GL, Tani P, McMillan R. Inhibition of autoantibody binding to platelet glycoprotein IIb/IIIa by anti-idiotypic antibodies in intravenous gammaglobulin. Blood. 1989;74(7):2414–7.PubMedGoogle Scholar
  9. Bruhns P, Samuelsson A, Pollard JW, Ravetch JV. Colony-stimulating factor-1-dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 2003;18(4):573–81.CrossRefPubMedGoogle Scholar
  10. Burdach SE, Evers KG, Geursen RG. Treatment of acute idiopathic thrombocytopenic purpura of childhood with intravenous immunoglobulin G: comparative efficacy of 7S and 5S preparations. J Pediatr. 1986;109(5):770–5.CrossRefPubMedGoogle Scholar
  11. Chow L, Aslam R, Speck ER, Kim M, Cridland N, Webster ML, Chen P, Sahib K, Ni H, Lazarus AH, Garvey MB, Freedman J, Semple JW. A murine model of severe immune thrombocytopenia is induced by antibody- and CD8+ T cell-mediated responses that are differentially sensitive to therapy. Blood. 2010;115(6):1247–53.CrossRefPubMedGoogle Scholar
  12. Clarkson SB, Bussel JB, Kimberly RP, Valinsky JE, Nachman RL, Unkeless JC. Treatment of refractory immune thrombocytopenic purpura with an anti-Fc gamma-receptor antibody. N Engl J Med. 1986;314(19):1236–9.CrossRefPubMedGoogle Scholar
  13. Cooper N, Heddle NM, Haas M, Reid ME, Lesser ML, Fleit HB, Woloski BMR, Bussel JB. Intravenous (IV) anti-D and IV immunoglobulin achieve acute platelet increases by different mechanisms: modulation of cytokine and platelet responses to IV anti-D by FcgammaRIIa and FcgammaRIIIa polymorphisms. Br J Haematol. 2004;124(4):511–8.CrossRefPubMedGoogle Scholar
  14. Crow AR, Lazarus AH. The mechanisms of action of intravenous immunoglobulin and polyclonal anti-d immunoglobulin in the amelioration of immune thrombocytopenic purpura: what do we really know? Transfus Med Rev. 2008;22(2):103–16.CrossRefPubMedGoogle Scholar
  15. Crow AR, Lazarus AH. Mechanistic properties of intravenous immunoglobulin in murine immune thrombocytopenia: support for FcγRIIB falls by the wayside. Semin Hematol. 2016;53:S20–2.CrossRefPubMedGoogle Scholar
  16. Crow AR, Song S, Semple JW, Freedman J, Lazarus AH. IVIg inhibits reticuloendothelial system function and ameliorates murine passive-immune thrombocytopenia independent of anti-idiotype reactivity. Br J Haematol. 2001;115(3):679–86.CrossRefPubMedGoogle Scholar
  17. Crow AR, Song S, Semple JW, Freedman J, Lazarus AH. A role for IL-1 receptor antagonist or other cytokines in the acute therapeutic effects of IVIg? Blood. 2007;109(1):155–8.CrossRefPubMedGoogle Scholar
  18. Crow AR, Brinc D, Lazarus AH. New insight into the mechanism of action of IVIg: the role of dendritic cells. J Thromb Haemost. 2009;7:245–8.CrossRefPubMedGoogle Scholar
  19. Crow AR, Suppa SJ, Chen X, Mott PJ, Lazarus AH. The neonatal Fc receptor (FcRn) is not required for IVIg or anti-CD44 monoclonal antibody-mediated amelioration of murine immune thrombocytopenia. Blood. 2011;118(24):6403–6.CrossRefPubMedGoogle Scholar
  20. Czajkowsky DM, Andersen JT, Fuchs A, Wilson TJ, Mekhaiel D, Colonna M, He J, Shao Z, Mitchell DA, Wu G, Dell A, Haslam S, Lloyd KA, Moore SC, Sandlie I, Blundell PA, Pleass RJ. Developing the IVIG biomimetic, Hexa-Fc, for drug and vaccine applications. Sci Rep. 2015;5(u):9526.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fehr J, Hofmann V, Kappeler U. Transient reversal of thrombocytopenia in idiopathic thrombocytopenic purpura by high-dose intravenous gamma globulin. N Engl J Med. 1982;306(21):1254–8.CrossRefPubMedGoogle Scholar
  22. Figueiredo CA, Drohomyrecky PC, McCarthy SDS, Leontyev D, Ma X-Z, Branch DR, Dunn SE. Optimal attenuation of experimental autoimmune encephalomyelitis by intravenous immunoglobulin requires an intact interleukin-11 receptor. PLoS One. 2014;9(7):e101947. Edited by O. Aktas.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Ganesan LP, Kim J, Wu Y, Mohanty S, Phillips GS, Birmingham DJ, Robinson JM, Anderson CL. FcγRIIb on liver sinusoidal endothelium clears small immune complexes. J Immunol. 2012;189(10):4981–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hansen RJ, Balthasar JP. Effects of intravenous immunoglobulin on platelet count and antiplatelet antibody disposition in a rat model of immune thrombocytopenia. Blood. 2002;100(6):2087–93.PubMedGoogle Scholar
  25. Imbach P, Barandun S, d’Apuzzo V, Baumgartner C, Hirt A, Morell A, Rossi E, Schöni M, Vest M, Wagner HP. High-dose intravenous gammaglobulin for idiopathic thrombocytopenic purpura in childhood. Lancet (Lond Engl). 1981;1(8232):1228–31.CrossRefGoogle Scholar
  26. Kapur R, Aslam R, Kim M, Guo L, Ni H, Segel GB, Semple JW. Thymic-derived tolerizing dendritic cells are upregulated in the spleen upon treatment with intravenous immunoglobulin in a murine model of immune thrombocytopenia. Platelets. 2016;28:1–4.Google Scholar
  27. Kouskoff V, Korganow AS, Duchatelle V, Degott C, Benoist C, Mathis D. Organ-specific disease provoked by systemic autoimmunity. Cell. 1996;87(5):811–22.CrossRefPubMedGoogle Scholar
  28. Li X, Kimberly RP. Targeting the Fc receptor in autoimmune disease. Expert Opin Ther Targets. 2014;18(3):335–50.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Li N, Zhao M, Hilario-Vargas J, Prisayanh P, Warren S, Diaz LA, Roopenian DC, Liu Z. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005;115(12):3440–50.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li J, van der Wal DE, Zhu G, Xu M, Yougbare I, Ma L, Vadasz B, Carrim N, Grozovsky R, Ruan M, Zhu L, Zeng Q, Tao L, Zhai Z, Peng J, Hou M, Leytin V, Freedman J, Hoffmeister KM, Ni H. Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun. 2015;6:7737.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Loubaki L, Chabot D, Paré I, Drouin M, Bazin R. MiR-146a potentially promotes IVIg-mediated inhibition of TLR4 signaling in LPS-activated human monocytes. Immunol Lett. 2017;185:64–73.CrossRefPubMedGoogle Scholar
  32. Massoud AH, Kaufman GN, Xue D, Béland M, Dembele M, Piccirillo CA, Mourad W, Mazer BD. Peripherally generated foxp3(+) regulatory T cells mediate the immunomodulatory effects of IVIg in allergic airways disease. J Immunol. 2017;198(7):2760–71.CrossRefPubMedGoogle Scholar
  33. Niknami M, Wang M-X, Nguyen T, Pollard JD. Beneficial effect of a multimerized immunoglobulin Fc in an animal model of inflammatory neuropathy (experimental autoimmune neuritis). J Peripher Nerv Syst. 2013;18(2):141–52.CrossRefPubMedGoogle Scholar
  34. Richard A, Corvol J-C, Debs R, Reach P, Tahiri K, Carpentier W, Gueguen J, Guillemot V, Labeyrie C, Adams D, Viala K, Cohen Aubart F. Transcriptome analysis of peripheral blood in chronic inflammatory demyelinating polyradiculoneuropathy patients identifies TNFR1 and TLR pathways in the IVIg response. Medicine. 2016;95(19):e3370.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ritter C, Bobylev I, Lehmann HC. Chronic inflammatory demyelinating polyneuropathy (CIDP): change of serum IgG dimer levels during treatment with intravenous immunoglobulins. J Neuroinflammation. 2015;12(1):148.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25.CrossRefPubMedGoogle Scholar
  37. Salama A, Mueller-Eckhardt C, Kiefel V. Effect of intravenous immunoglobulin in immune thrombocytopenia. Lancet (Lond Engl). 1983;2(8343):193–5.CrossRefGoogle Scholar
  38. Salama A, Kiefel V, Amberg R, Mueller-Eckhardt C. Treatment of autoimmune thrombocytopenic purpura with rhesus antibodies (anti-Rh0(D)). Blut. 1984;49(1):29–35.CrossRefPubMedGoogle Scholar
  39. Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–89.CrossRefPubMedGoogle Scholar
  40. Siragam V, Brinc D, Crow AR, Song S, Freedman J, Lazarus AH. Can antibodies with specificity for soluble antigens mimic the therapeutic effects of intravenous IgG in the treatment of autoimmune disease? J Clin Invest. 2005;115(1):155–60.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Siragam V, Crow AR, Brinc D, Song S, Freedman J, Lazarus AH. Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells. Nat Med. 2006;12(6):688–92.CrossRefPubMedGoogle Scholar
  42. Teeling JL, Jansen-Hendriks T, Kuijpers TW, de Haas M, van de Winkel JG, Hack CE, Bleeker WK. Therapeutic efficacy of intravenous immunoglobulin preparations depends on the immunoglobulin G dimers: studies in experimental immune thrombocytopenia. Blood. 2001;98(4):1095–9.CrossRefPubMedGoogle Scholar
  43. Tovo PA, Miniero R, Fiandino G, Saracco P, Messina M. Fc-depleted vs intact intravenous immunoglobulin in chronic ITP. J Pediatr. 1984;105(4):676–7.CrossRefPubMedGoogle Scholar
  44. Trinath J, Hegde P, Sharma M, Maddur MS, Rabin M, Vallat J-M, Magy L, Balaji KN, Kaveri SV, Bayry J. Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells. Blood. 2013;122(8):1419–27.CrossRefPubMedGoogle Scholar
  45. von Gunten S, Shoenfeld Y, Blank M, Branch DR, Vassilev T, Käsermann F, Bayry J, Kaveri S, Simon H-U. IVIG pluripotency and the concept of Fc-sialylation: challenges to the scientist. Nat Rev Immunol. 2014;14(5):349.CrossRefGoogle Scholar
  46. Webster ML, Sayeh E, Crow M, Chen P, Nieswandt B, Freedman J, Ni H. Relative efficacy of intravenous immunoglobulin G in ameliorating thrombocytopenia induced by antiplatelet GPIIbIIIa versus GPIbalpha antibodies. Blood. 2006;108(3):943–6.CrossRefPubMedGoogle Scholar
  47. Yu X, Menard M, Prechl J, Bhakta V, Sheffield WP, Lazarus AH. Monovalent Fc receptor blockade by an anti-Fc receptor/albumin fusion protein ameliorates murine ITP with abrogated toxicity. Blood. 2016;127(1):132–8.CrossRefPubMedGoogle Scholar
  48. Zuercher AW, Spirig R, Baz Morelli A, Käsermann F. IVIG in autoimmune disease - potential next generation biologics. Autoimmun Rev. 2016;15(8):781–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Innovation at The Canadian Blood ServicesOttawaCanada
  2. 2.Keenan Research Centre of the Li Ka Shing Knowledge Institute at St. Michael’s HospitalTorontoCanada
  3. 3.Departments of Medicine and Laboratory Medicine & Pathobiology, Faculty of MedicineUniversity of TorontoTorontoCanada

Personalised recommendations