On Weighted Configuration Logics

  • Paulina Paraponiari
  • George RahonisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10487)


We introduce and investigate a weighted propositional configuration logic over a commutative semiring. Our logic, which is proved to be sound and complete, is intended to serve as a specification language for software architectures with quantitative features. We extend the weighted configuration logic to its first-order level and succeed in describing architecture styles equipped with quantitative characteristics. We provide interesting examples of weighted architecture styles. Surprisingly, we can construct a formula, in our logic, which describes a classical problem of a different nature than that of software architectures.


Software architectures Configuration logics Semirings Weighted configuration logics 



We should like to express our gratitude to Joseph Sifakis for useful discussions and to Anastasia Mavridou for clarifications on [11].


  1. 1.
    Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01492-5 zbMATHGoogle Scholar
  2. 2.
    Droste, M., Meinecke, I.: Weighted automata and weighted MSO logics for average and long-time behaviors. Inf. Comput. 220–221, 44–59 (2012). doi: 10.1016/j.ic.2012.10.001 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Droste., M., Rahonis, G.: Weighted linear dynamic logic. In: GandALF 2016. EPTCS 226, pp. 149–163 (2016). doi: 10.4204/EPTCS.226.11
  4. 4.
    Eugster, P., Felber, P., Guerraoui, R., Kermarrec, A.-M.: The many faces of Publish/Subscribe. ACM Comput. Surv. 35(2), 114–131 (2003). doi: 10.1145/857076.857078 CrossRefGoogle Scholar
  5. 5.
    Garlan, D.: Software architecture: a travelogue. In: FOSE 2014, pp. 29–39, ACM (2014). doi: 10.1145/2593882.2593886
  6. 6.
    Hasan, S., O’Riain, S., Curry, E.: Approximate semantic matching of heterogeneous events. In: DEBS 2012, pp. 252–263, ACM (2012). doi: 10.1145/2335484.2335512
  7. 7.
    Lluch-Lafuente, A., Montanari, U.: Quantitative \(\mu \)-calculus and CTL over constraint semirings. Theoret. Comput. Sci. 346, 135–160 (2005). doi: 10.1016/j.entcs.2004.02.063 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Mandrali, E.: Weighted Computability with Discounting, PhD Thesis. Aristotle University of Thessaloniki, Thessaloniki (2013)Google Scholar
  9. 9.
    Mandrali, E., Rahonis, G.: On weighted first-order logics with discounting. Acta Inform. 51, 61–106 (2014). doi: 10.1007/s00236-013-0193-3 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Mandrali, E., Rahonis, G.: Weighted first-order logics over semirings. Acta Cybernet. 22, 435–483 (2015). doi: 10.14232/actacyb.22.2.2015.13 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Mavridou, A., Baranov, E., Bliudze, S., Sifakis, J.: Configuration logics: modelling architecture styles. J. Logic Algebraic Methods Program. 86, 2–29 (2016). doi: 10.1016/j.jlamp.2016.05.002 CrossRefzbMATHGoogle Scholar
  12. 12.
    Paraponiari, P., Rahonis, G.: On weighted configuration logics. arxiv:1704.04969v4
  13. 13.
    Pittou, M., Rahonis, G.: Weighted recognizability over infinite alphabets. Acta Cybernet. 23, 283–317 (2017). doi: 10.14232/actacyb.23.1.2017.16 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sifakis, J.: Rigorous systems design. Found. Trends Sig. Process 6(4), 293–362 (2013). doi: 10.1561/1000000034 MathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonkiGreece

Personalised recommendations