Certification of Workflows in a Component-Based Cloud of High Performance Computing Services

  • Allberson B. de Oliveira DantasEmail author
  • F. Heron de Carvalho Junior
  • Luis S. Barbosa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10487)


The orchestration of high performance computing (HPC) services to build scientific applications is based on complex workflows. A challenging task consists of improving the reliability of such workflows, avoiding faulty behaviors that can lead to bad consequences in practice. This paper introduces a certifier component for certifying scientific workflows in a certification framework proposed for HPC Shelf, a cloud-based platform for HPC in which different kinds of users can design, deploy and execute scientific applications. This component is able to inspect the workflow description of a parallel computing system of HPC Shelf and check its consistency with respect to a number of safety and liveness properties specified by application designers and component developers.


  1. 1.
    Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997). doi: 10.1007/3-540-63139-9_48 CrossRefGoogle Scholar
  2. 2.
    Adam, N.R., Atluri, V., Huang, W.-K.: Modeling and analysis of workflows using petri nets. J. Intell. Inf. Syst. 10(2), 131–158 (1998)CrossRefGoogle Scholar
  3. 3.
    Attie, P., Singh, M., Sheth, A.P., Rusinkiewicz, M.: Specifying and enforcing intertask dependencies. In: 19th International Conference on Very Large Data Bases, Dublin, Ireland, 24–27 August 1993, Proceedings, pp. 134–145 (1993)Google Scholar
  4. 4.
    Baeten, J.C.M., Basten, T., Reniers, M.A., Algebra, P.: Equational theories of communicating processes. Cambridge Tracts in Theoretical Computer Science (50). Cambridge University Press, Cambridge (2010)Google Scholar
  5. 5.
    Davulcu, H., Kifer, M., Ramakrishnan, C.R., Ramakrishnan, I.V.: Logic based modeling and analysis of workflows. In: Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 25–33. ACM (1998)Google Scholar
  6. 6.
    Dayal, U., Hsu, M., Ladin, R.: Organizing long-running activities with triggers and transactions. In: ACM SIGMOD Record, vol. 19, pp. 204–214. ACM (1990)Google Scholar
  7. 7.
    de Carvalho Junior, F.H., Lins, R.D., Correa, R.C., Araújo, G.A.: Towards an architecture for component-oriented parallel programming. Concurr. Comput.: Pract. Exp. 19(5), 697–719 (2007)CrossRefGoogle Scholar
  8. 8.
    de Carvalho Junior, F.H., Rezende, C.A., Silva, J.C., Al Alam, W.G.: Contextual abstraction in a type system for component-based high performance computing platforms. Sci. Comput. Program. 132, 96–128 (2016)CrossRefzbMATHGoogle Scholar
  9. 9.
    de Carvalho Silva, J., de Carvalho Junior, F.H.: A platform of scientific workflows for orchestration of parallel components in a cloud of high performance computing applications. In: Castor, F., Liu, Y.D. (eds.) SBLP 2016. LNCS, vol. 9889, pp. 156–170. Springer, Cham (2016). doi: 10.1007/978-3-319-45279-1_11 CrossRefGoogle Scholar
  10. 10.
    de Oliveira Dantas, A.B., de Carvalho Junior, F.H., Soares Barbosa, L.: A framework for certification of large-scale component-based parallel computing systems in a cloud computing platform for HPC services. In: Proceedings of the 7th International Conference on Cloud Computing and Services Science. CLOSER, vol. 1, pp. 229–240. ScitePress (2017)Google Scholar
  11. 11.
    Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)CrossRefGoogle Scholar
  12. 12.
    Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Berriman, G.B., Good, J., et al.: Pegasus: a framework for mapping complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)Google Scholar
  13. 13.
    Dongarra, J., Otto, S.W., Snir, M., Walker, D.: An Introduction to the MPI Standard. Technical report CS-95-274, University of Tennessee, January 1995Google Scholar
  14. 14.
    Fu, X., Bultan, T., Hull, R., Su, J.: Verification of vortex workflows. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 143–157. Springer, Heidelberg (2001). doi: 10.1007/3-540-45319-9_11 CrossRefGoogle Scholar
  15. 15.
    Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The formal specification language mCRL2. In: Methods for Modelling Software Systems: Dagstuhl Seminar 06351 (2007)Google Scholar
  16. 16.
    Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. MIT Press, Cambridge (2014)zbMATHGoogle Scholar
  17. 17.
    Harrison, A., Taylor, I., Wang, I., Shields, M.: WS-Rf workflow in triana. Int. J. High Perform. Comput. Appl. 22(3), 268–283 (2008)CrossRefGoogle Scholar
  18. 18.
    Hull, R., Llirbat, F., Siman, E., Su, J., Dong, G., Kumar, B., Zhou, G.: Declarative workflows that support easy modification and dynamic browsing. ACM SIGSOFT Softw. Eng. Notes 24(2), 69–78 (1999)CrossRefGoogle Scholar
  19. 19.
    Kozen, D.: Results on the propositional \(\mu \)-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system. Concurr. Comput.: Pract. Exp. 18(10), 1039–1065 (2006)CrossRefGoogle Scholar
  21. 21.
    Qin, J., Fahringer, T., Pllana, S.: UML based grid workflow modeling under ASKALON. In: Kacsuk, P., Fahringer, T., Németh, Z. (eds.) Distributed and Parallel Systems: From Cluster to Grid Computing (DAPSYS 2006), pp. 191–200. Springer, Boston (2006). doi: 10.1007/978-0-387-69858-8_19
  22. 22.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specifications and Formal Program Development. Cambridge University Press, Cambridge (2011)zbMATHGoogle Scholar
  23. 23.
    Senkul, P., Kifer, M., Toroslu, I.H.: A logical framework for scheduling workflows under resource allocation constraints. In: Proceedings of the 28th International Conference on Very Large Data Bases, pp. 694–705. VLDB Endowment (2002)Google Scholar
  24. 24.
    Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M.: Workflows for e-Science: Scientific Workflows for Grids. Springer, New York (2006)Google Scholar
  25. 25.
    Van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circ. Syst. Comput. 8(01), 21–66 (1998)CrossRefGoogle Scholar
  26. 26.
    Wassermann, B., Emmerich, W., Butchart, B., Cameron, N., Chen, L., Patel, J.: Sedna: a BPEL-based environment for visual scientific workflow modeling. In: Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (eds.) Workflows for e-Science, pp. 428–449. Springer, London (2007). doi: 10.1007/978-1-84628-757-2_26
  27. 27.
    Wodtke, D., Weikum, G.: A formal foundation for distributed workflow execution based on state charts. In: Afrati, F., Kolaitis, P. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 230–246. Springer, Heidelberg (1997). doi: 10.1007/3-540-62222-5_48 CrossRefGoogle Scholar
  28. 28.
    Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Reyes, S.S., Dunlop, I., Nenadic, A., Fisher, P., et al.: The Taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1), W557 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Allberson B. de Oliveira Dantas
    • 1
    Email author
  • F. Heron de Carvalho Junior
    • 1
  • Luis S. Barbosa
    • 2
    • 3
  1. 1.MDCCUniversidade Federal do CearáFortalezaBrazil
  2. 2.HASLab INESC TECUniversidade do MinhoBragaPortugal
  3. 3.UNU-EGOVUnited Nations UniversityGuimarãesPortugal

Personalised recommendations