N. Alon, M.B. Nathanson, I. Ruzsa, Adding distinct congruence classes modulo a prime. Am. Math. Monthly 102, 250–255 (1995)
MathSciNet
CrossRef
MATH
Google Scholar
N. Alon, M.B. Nathanson, I. Ruzsa, The polynomial method and restricted sums of congruence classes. J. Number Theory 56, 404–417 (1996)
MathSciNet
CrossRef
MATH
Google Scholar
B. Bajnok, On the maximum size of a \((k, l)\)-sum-free subset of an abelian group. Int. J. Number Theory 5(6), 953–971 (2009)
MathSciNet
CrossRef
MATH
Google Scholar
B. Bajnok, On the minimum size of restricted sumsets in cyclic groups. Acta Math. Hungar. 148(1), 228–256 (2016)
MathSciNet
CrossRef
MATH
Google Scholar
B. Bajnok, The \(h\)-critical number of finite abelian groups. Unif. Distrib. Theory 10(2), 93–115 (2015)
MathSciNet
MATH
Google Scholar
B. Bajnok, More on the \(h\)-critical numbers of finite abelian groups. Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 59, 113–122 (2016)
MathSciNet
Google Scholar
B. Bajnok, Corrigendum to “The \(h\)-critical number of finite abelian groups”. Unif. Distrib. Theory (to appear)
Google Scholar
B. Bajnok, S. Edwards, On two questions about restricted sumsets in finite abelian groups. Australas. J. Comb. 68(2), 229–244 (2017)
MathSciNet
MATH
Google Scholar
B. Bajnok, R. Matzke, The minimum size of signed sumsets. Electron. J. Comb.
22(2), paper 2.50, 17 (2015)
Google Scholar
B. Bajnok, R. Matzke, On the minimum size of signed sumsets in elementary abelian groups. J. Number Theory 159, 384–401 (2016)
MathSciNet
CrossRef
MATH
Google Scholar
É. Balandraud, An addition theorem and maximal zero-sum free sets in \(\mathbb{Z}/p\mathbb{Z}\). Israel J. Math. 188, 405–429 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
É. Balandraud, Erratum to: “An addition theorem and maximal zero-sum free sets in \(\mathbb{Z}/p\mathbb{Z}\)”. Israel J. Math. 192(2), 1009–1010 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
É. Balandraud, Addition theorems in \(\mathbb{F}_p\) via the polynomial method, arXiv:1702.06419v1 (math.CO)
A.-L. Cauchy, Recherches sur les nombres. J. École Polytech. 9, 99–123 (1813)
Google Scholar
P.H. Diananda, H.P. Yap, Maximal sum-free sets of elements of finite groups. Proc. Jpn. Acad. 45, 1–5 (1969)
MathSciNet
CrossRef
MATH
Google Scholar
J.A. Dias Da Silva, Y.O. Hamidoune, Cyclic space for Grassmann derivatives and additive theory. Bull. London Math. Soc. 26, 140–146 (1994)
Google Scholar
G.T. Diderrich, An addition theorem for abelian groups of order \(pq\). J. Number Theory 7, 33–48 (1975)
MathSciNet
CrossRef
MATH
Google Scholar
G.T. Diderrich, H.B. Mann, Combinatorial problems in finite abelian groups. in A Survey of Combinatorial Theory, ed. by J.N. Srivastava et al. (North-Holland 1973)
Google Scholar
S. Eliahou, M. Kervaire, Sumsets in vector spaces over finite fields. J. Number Theory 71, 12–39 (1998)
MathSciNet
CrossRef
MATH
Google Scholar
S. Eliahou, M. Kervaire, Old and new formulas for the Hopf-Stiefel and related functions. Expo. Math. 23(2), 127–145 (2005)
MathSciNet
CrossRef
MATH
Google Scholar
P. Erdős, H. Heilbronn, On the addition of residue classes mod \(p\). Acta Arith. 9, 149–159 (1964)
MathSciNet
CrossRef
MATH
Google Scholar
M. Freeze, W. Gao, A. Geroldinger, The critical number of finite abelian groups. J. Number Theory 129, 2766–2777 (2009)
MathSciNet
CrossRef
MATH
Google Scholar
M. Freeze, W. Gao, A. Geroldinger, Coorigendum to “The critical number of finite abelian groups”. J. Number Theory 152, 205–207 (2015)
MathSciNet
CrossRef
MATH
Google Scholar
L. Gallardo, G. Grekos et al., Restricted addition in \(\mathbb{Z}_ /n\mathbb{Z}\) and an application to the Erdős–Ginzburg–Ziv problem. J. London Math. Soc. 65(2), 513–523 (2002)
Google Scholar
W. Gao, Y.O. Hamidoune, On additive bases. Acta Arith. 88(3), 233–237 (1999)
MathSciNet
CrossRef
MATH
Google Scholar
J.R. Griggs, Spanning subset sums for finite abelian groups. Discret. Math. 229, 89–99 (2001)
MathSciNet
CrossRef
MATH
Google Scholar
Y.O. Hamidoune, A. Plagne, A new critical pair theorem applied to sum-free sets in Abelian groups. Comment. Math. Helv. 79, 1–25 (2003)
Google Scholar
Gy. Károlyi, On restricted set addition in abelian groups. Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 46, 47–54 (2003)
Google Scholar
Gy. Károlyi, The Erdős–Heilbronn problem in abelian groups. Israel J. of Math. 139, 349–359 (2004)
Google Scholar
Gy. Károlyi, A note on the Hopf–Stiefel function. Eur. J. Combin. 27, 1135–1137 (2006)
Google Scholar
J.H.B. Kemperman, On small sumsets in an abelian group. Acta Math. 103, 63–88 (1960)
MathSciNet
CrossRef
MATH
Google Scholar
V.F. Lev, Restricted set addition in groups I: the classical setting. J. London Math. Soc.62(2), 27–40 (2000)
Google Scholar
V.F. Lev, Three-fold Restricted Set Addition in Groups. Europ. J. Combinatorics 23, 613–617 (2002)
MathSciNet
CrossRef
MATH
Google Scholar
V.F. Lev, Critical pairs in abelian groups and Kemperman’s structure theorem. Int. J. Number Theory 3, 379–396 (2006)
MathSciNet
CrossRef
MATH
Google Scholar
H.B. Mann, Y.F. Wou, Addition theorem for the elementary abelian group of type \((p, p)\). Monatshefte für Math. 102, 273–308 (1986)
MathSciNet
CrossRef
MATH
Google Scholar
N.H. Nguyen, E. Szemerédi, V.H. Vu, Subset sums modulo a prime. Acta Arith. 131(4), 303–316 (2008)
MathSciNet
CrossRef
MATH
Google Scholar
A. Plagne, Additive number theory sheds extra light on the Hopf–Stiefel \(\circ \) function. Enseign. Math., II Sér. 49 (1–2), 109–116 (2003)
Google Scholar
A. Plagne, Optimally small sumsets in groups, I. The supersmall sumset property, the \(\mu _G^{(k)}\) and the \(\nu _G^{(k)}\) functions. Unif. Distrib. Theory 1(1), 27–44 (2006)
MathSciNet
MATH
Google Scholar
A. Plagne, Optimally small sumsets in groups, II. The hypersmall sumset property and restricted addition. Unif. Distrib. Theory 1(1), 111–124 (2006)
MathSciNet
MATH
Google Scholar
D. Shapiro, Products of sums of squares. Expo. Math. 2, 235–261 (1984)
MathSciNet
MATH
Google Scholar
A.G. Vosper, The critical pairs of subsets of a group of prime order. J. Lond. Math. Soc. 31, 200–205 (1956)
MathSciNet
CrossRef
MATH
Google Scholar
A.G. Vosper, Addendum to "The critical pairs of subsets of a group of prime order". J. Lond. Math. Soc. 31, 280–282 (1956)
MathSciNet
CrossRef
MATH
Google Scholar