Skip to main content

Extending Babbage’s (Non-)Primality Tests

  • Conference paper
  • First Online:
Combinatorial and Additive Number Theory II (CANT 2015, CANT 2016)

Abstract

We recall Charles Babbage’s 1819 criterion for primality, based on simultaneous congruences for binomial coefficients, and extend it to a least-prime-factor test. We also prove a partial converse of his non-primality test, based on a single congruence. Along the way we encounter Bachet, Bernoulli, Bézout, Euler, Fermat, Kummer, Lagrange, Lucas, Vandermonde, Waring, Wilson, Wolstenholme, and several contemporary mathematicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Babbage, Demonstration of a theorem relating to prime numbers, Edinburgh Phil. J. 1, 46–49 (1819), http://books.google.com/books?id=KrA-AAAAYAAJ&pg=PA46

  2. C. Babbage, Passages from the Life of a Philosopher, (Longman, Green, Longman, Roberts, & Green, London, 1864), http://djm.cc/library/Passages_Life_of_a_Philosopher_Babbage_edited.pdf

  3. C.G. Bachet, Problèmes plaisants et délectables, qui se font par les nombres, 2nd edn. (Rigaud, Lyon, 1624), http://bsb3.bsb.lrz.de/~db/1008/bsb10081407/images/bsb10081407_00036

  4. W.A. Beyer, Review of [7]. Am. Math. Mon. 86, 66–67 (1979)

    Article  Google Scholar 

  5. B.D. Blackwood, Charles Babbage. In: ed. by D.R. Franceschetti Biographical Encyclopedia of Mathematicians. (Cavendish, New York, 1998), pp. 33–36, http://www.blackwood.org/Babbage.htm

  6. É. Barbin, J. Borowczyk, J.-L. Chabert, A. Djebbar, M. Guillemot, J.-C. Martzloff, A. Michel-Pajus, A History of Algorithms: From the Pebble to the Microchip. ed. by J.-L. Chabert. Trans. by C. Weeks (Springer, Berlin and Heidelberg, 2012)

    Google Scholar 

  7. J.M. Dubbey, The Mathematical Work of Charles Babbage (Cambridge University Press, Cambridge, 1978)

    Book  MATH  Google Scholar 

  8. N.J. Fine, Binomial coefficients modulo a prime. Am. Math. Mon. 54, 589–592 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Gardiner, Four problems on prime power divisibility. Am. Math. Mon. 95, 926–931 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Grabiner, Review of From Newton to Hawking: A History of Cambridge University’s Lucasian Professors of Mathematics by K.C. Knox, R. Noakes. Am. Math. Mon. 112, 757–762 (2005)

    Article  Google Scholar 

  11. A. Granville, Arithmetic properties of binomial coefficients I: binomial coefficients modulo prime powers. In: J. Borwein (ed), Organic mathematics (Burnaby, BC, 1995). CMS Conference Proceeding Vol. 20 (American Mathematical Society, Providence, RI, 1997), pp. 253–275, http://www.dms.umontreal.ca/~andrew/Binomial/

  12. R.K. Guy, Unsolved Problems in Number Theory, 3rd edn. (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  13. E. Kummer, Über die Ergänzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44, 93–146 (1852)

    Article  MathSciNet  Google Scholar 

  14. J.L. Lagrange, Démonstration d’un théorème nouveau concernant les nombres premiers, Nouv. Mém. Acad. Roy. Sci. Belles-Letters, Berlin 2, 125–137 (1771); available at https://books.google.com/books?id=_-U_AAAAYAAJ&pg=PA125

  15. É. Lucas, Sur les congruences des nombres eulériens et des coefficients différentiels des fonctions trigonométriques, suivant un module premier, Bull. Soc. Math. France 6, 49–54 (1878), http://archive.numdam.org/ARCHIVE/BSMF/BSMF_1878__6_/BSMF_1878__6__49_1/BSMF_1878__6__49_1.pdf

  16. R.J. McIntosh, On the converse of Wolstenholme’s theorem. Acta Arith. 71, 381–389 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Meštrović, A note on the congruence \(\left(\begin{array}{l}{nd}\\{md}\end{array}\right) \equiv \left(\begin{array}{l}{n}\\{m}\end{array}\right) ({\rm{mod}}\, q)\). Am. Math. Mon. 116, 75–77 (2009)

    Article  Google Scholar 

  18. R. Meštrović, Wolstenholme’s theorem: its generalizations and extensions in the last hundred and fifty years (1862–2011), arXiv:1111.3057 [math.NT] (2011)

  19. R. Meštrović, An extension of Babbage’s criterion for primality, Math. Slovaca 63, 1179–1182 (2013). http://dx.doi.org/10.2478/s12175-013-0164-8

  20. V.H. Moll, Numbers and Functions: From a Classical-Experimental Mathematician’s Point of View. Student Mathematical Library, Vol. 65 (American Mathematical Society, Providence, RI, 2012)

    Google Scholar 

  21. M. Moseley, Irascible Genius: A Life of Charles Babbage, Inventor (Hutchinson, London, 1964)

    Google Scholar 

  22. J.J. O’Connor, E.F. Robertson, Charles Babbage, MacTutor History of Mathematics, http://www-groups.dcs.st-and.ac.uk/history/Biographies/Babbage.html

  23. J.T. O’Donnell, Review of Charles Babbage: Pioneer of the Computer by A. Hymanl. Am. Math. Mon. 92, 522–525 (1985)

    Article  Google Scholar 

  24. C. Pomerance, Divisors of the middle binomial coefficient. Am. Math. Mon. 122, 636–644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Ribenboim, The Little Book of Bigger Primes (Springer, New York, 2004)

    MATH  Google Scholar 

  26. D. Segal, H.W. Brinkmann, E435, Am. Math. Mon. 48, 269–271 (1941)

    Google Scholar 

  27. D. Segal, W. Johnson, E435. Am. Math. Mon. 83, 813 (1976)

    Article  Google Scholar 

  28. Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org/ (2017)

  29. V. Trevisan, K. Weber, Testing the converse of Wolstenholme’s theorem. Mat. Contemp. 21, 275–286 (2001)

    MathSciNet  MATH  Google Scholar 

  30. A.-T. Vandermonde, Mémoire sur des irrationnelles de différens ordres, avec une application au cercle, Mém. Acad. Roy. Sci. Paris (1772), 489–498, http://gallica.bnf.fr/ark:/12148/bpt6k3570q/f79

  31. E. Waring, Meditationes Algebraicae (Cambridge University Press, Cambridge, 1770)

    Google Scholar 

  32. J. Wolstenholme, On certain properties of prime numbers, Q. J. Pure Appl. Math. 5, 35–39 (1862), http://books.google.com/books?id=vL0KAAAAIAAJ&pg=PA35

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Sondow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sondow, J. (2017). Extending Babbage’s (Non-)Primality Tests. In: Nathanson, M. (eds) Combinatorial and Additive Number Theory II. CANT CANT 2015 2016. Springer Proceedings in Mathematics & Statistics, vol 220. Springer, Cham. https://doi.org/10.1007/978-3-319-68032-3_19

Download citation

Publish with us

Policies and ethics