Skip to main content

Progress Beyond the State-of-the-Art in the Field of Metallic Materials for Bioimplant Applications

Abstract

Metallic materials have attracted the interest from a wide research community including materials scientists, materials engineers, biologists and medical doctors for their use in the biomedical area. Some alloy compositions are already in use in the market but suffer from several shortcomings. For this reason, novel, optimized, non-toxic, biocompatible compositions are being continuously devised. This chapter first reviews and discusses the advantages of bulk metallic glasses (BMGs) for orthopaedic applications, with special emphasis on their mechanical properties. Examples of newly developed permanent Ti-based and biodegradable Mg-based materials are given. In the second part of this chapter, the surface engineering methods currently available to modify the surface of Ti alloys are discussed. The outermost material layer in contact with the surrounding tissue acts as the biointerface and, hence, if appropriately designed, it can provide enhanced mechanical and corrosion resistance to the bioimplant and prevent from ions leaching. Finally, the recent progress on the formation of nanostructured titania coatings by hydrothermal treatment on the surface of Ti-based alloys is analysed.

Keywords

  • Titanium alloys
  • Magnesium alloys
  • Bioimplants
  • Hydrothermal treatment
  • Nanostructured coatings

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68025-5_2
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68025-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Argon AS, Kuo HY (1980) Free energy spectra for inelastic deformation of five metallic glass alloys. J Non-Cryst Solids 37:241–266

    CrossRef  Google Scholar 

  • Barna PB, Adamik M (1995) Growth mechanisms of polycrystalline thin films. In: Matacotta FC, Ottaviani G (eds) Science and technology of thin films. World Scientific, Singapore, pp 1–28

    Google Scholar 

  • Barnard AS, Curtiss LA (2005) Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 5:1261–1266

    CrossRef  Google Scholar 

  • Baszkiewicz J, Krupa D, Mizera J et al (2005) Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum 78:143–147

    CrossRef  Google Scholar 

  • Benning LG, Waychunas GA (2008) Kinetics of water-rock interaction. In: Brantley SL et al (eds). Springer, New York, pp 259–333

    Google Scholar 

  • Bosco R, Van Den Beucken J, Leeuwenburgh S et al (2012) Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2:95–119

    CrossRef  Google Scholar 

  • Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166

    CrossRef  Google Scholar 

  • Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—A technology for crystal growth and materials processing. William Andrew Publishing/Noyes

    Google Scholar 

  • Calin M, Gebert A, Ghinea AC et al (2013) Designing biocompatible Ti-based metallic glasses for implant applications. Mater Sci Eng C 33:875–883

    CrossRef  Google Scholar 

  • Chen Q, Chan KC, Liu L (2011) Tribological characterisation of Zr-based bulk metallic glass in simulated physiological media. Phil Mag 9:3705–3715

    CrossRef  Google Scholar 

  • Cheng FT, Shi P, Man HC (2004) A preliminary study of TiO2 deposition on NiTi by a hydrothermal method. Surf Coat Technol 187:26–32

    CrossRef  Google Scholar 

  • Cortizo MC, Lorenzo Fernández, de Mele M (2004) Cytoxocity of copper ions released from metal. Biol Trace Elem Res 102:129–141

    CrossRef  Google Scholar 

  • De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93

    CrossRef  Google Scholar 

  • Dhanaraj G et al (2010) Springer handbook of crystal growth, 1st ed. Springer, Berlin

    Google Scholar 

  • Dong X, Tao J, Li Y et al (2010) Oriented single crystalline TiO2 nano-pillar arrays directly grown on titanium substrate in tetramethylammonium hydroxide solution. Appl Surf Sci 256:2532–2538

    CrossRef  Google Scholar 

  • Dozzi M, Selli E (2013) Specific facets-dominated anatase TiO2: fluorine-mediated synthesis and photoactivity. Catalysts 3:455–485

    CrossRef  Google Scholar 

  • Drnovšek N, Daneu N, Rečnik A et al (2009) Hydrothermal synthesis of a nanocrystalline anatase layer on Ti6A4V implants. Surf Coat Technol 203:1462–1468

    CrossRef  Google Scholar 

  • Drnovšek N, Rade K, Milačič R et al (2012) The properties of bioactive TiO2 coatings on Ti-based implants. Surf Coat Technol 209:177–183

    CrossRef  Google Scholar 

  • Drnovsek N, Jerman UD, Romih R et al (2015) Improvement of osseointegration of Ti and Ti-alloys by hydrothermally prepared bioactive anatase coating. Int J Nano Biomater 6:18–28

    CrossRef  Google Scholar 

  • Elias LM, Schneidera SG, Scheneidera S et al (2006) Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mater Sci Eng 432:108–112

    CrossRef  Google Scholar 

  • Fornell J, Pellicer E, Van Steengerge N et al (2013) Improved plasticity and corrosion behavior in Ti–Zr–Cu–Pd metallic glass with minor additions of Nb: an alloy composition intended for biomedical applications. Mater Sci Eng A 559:159–164

    CrossRef  Google Scholar 

  • Gao J, Sharp J, Guan D et al (2015) New compositional design for creating tough metallic glass composites with excellent work hardening. Acta Mater 86:208–215

    CrossRef  Google Scholar 

  • Geetha M, Singh AK, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425

    CrossRef  Google Scholar 

  • González S, Pellicer E, Fornell J et al (2012) Improved mechanical performance and delayed corrosión phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. J Mech Behav Biomed Mater 6:53–62

    CrossRef  Google Scholar 

  • Gu X, Zheng Y, Zhong S et al (2010) Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomater 31:1093–1103

    CrossRef  Google Scholar 

  • Han JH, Park DH, Bang CW et al (2009) Sn effect on microstructure and mechanical properties of ultrafine eutectic Ti–Fe–Sn alloys. J Alloy Compd 483:44–46

    CrossRef  Google Scholar 

  • Hanaor DH, Sorrell C (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    CrossRef  Google Scholar 

  • Hanawa T (1999) In vivo metallic biomaterials and surface modification. Mater Sci Eng A 267:260–266

    CrossRef  Google Scholar 

  • He G, Eckert J, Löser W et al (2003) Novel Ti-base nanostructure-dendrite composite with enhanced placticity. Nature Mater 2:33–37

    CrossRef  Google Scholar 

  • Huang L, Cao Z, Meyer HM et al (2011) Reponses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness. Acta Biomater 7:395–405

    CrossRef  Google Scholar 

  • Hynowska A, Blanquer A, Pellicer E et al (2013) Novel Ti–Zr–Hf–Fe nanostructured alloy for biomedical applications. Materials 6:4930–4945

    CrossRef  Google Scholar 

  • Jolivet JP, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, NJ

    Google Scholar 

  • Kühn U, Mattern N, Gebert A et al (2006) Ductile Ti-based nanocrystalline matrix composites. Intermetallics 14:978–981

    CrossRef  Google Scholar 

  • Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20:5–50

    CrossRef  Google Scholar 

  • Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409

    CrossRef  Google Scholar 

  • Lencka MM, Riman RE (2003) Crystal growth technology. In: Byrappa K, Ohachi T (eds). William Andrew Publishing, Norwich, NY, pp 271–297

    Google Scholar 

  • Li S, Ye G, Chen G (2009) Low-temperature preparation and characterization of nanocrystalline anatase TiO2. J Phys Chem C 113:4031–4037

    CrossRef  Google Scholar 

  • Li HF, Pang SJ, Liu Y et al (2015) Biodegradable Mg–Zn–Ca–Zr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater Des 67:9–19

    CrossRef  Google Scholar 

  • Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47:49–121

    CrossRef  Google Scholar 

  • Lorenzetti M, Pellicer E, Sort J et al (2014a) Improvement to the corrosion resistance of Ti-based implants using hydrothermally synthesized nanostructured anatase coatings. Materials 7:180–194

    CrossRef  Google Scholar 

  • Lorenzetti M, Biglino D, Novak S et al (2014b) Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C 37:390–398

    CrossRef  Google Scholar 

  • Lorenzetti M, Dakischew O, Trinkaus K et al (2015) Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO2 coatings. J Biomater Appl 30:71–84

    CrossRef  Google Scholar 

  • Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512

    CrossRef  Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702

    CrossRef  Google Scholar 

  • Morrison ML, Buchanan RA, Peker A (2007) Electrochemical behavior of a Ti-based bulk metallic glass. J Non-Cryst Solids 353:2115–2124

    CrossRef  Google Scholar 

  • Naga S, Banerjee R, Frasera HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–Mo biocompatible alloys. Mater Sci Eng 25:357–362

    CrossRef  Google Scholar 

  • Neupane MP, Park IS, Lee MH (2014) Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating. Thin Solid Films 550:268–271

    CrossRef  Google Scholar 

  • Nouri A, Hodgson PD, Wen CE (2010) Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater 6:1630–1639

    CrossRef  Google Scholar 

  • Oak J-J, Inoue A (2007) Attempt to develop Ti-based amorphous alloys for biomaterials. Mater Sci Eng A 449–451:220–224

    CrossRef  Google Scholar 

  • Oak J-J, Inoue A (2008) Formation, mechanical properties and corrosion resistance of Ti-Pd base glassy alloys. J Non-Cryst Solids 354:1828–1832

    CrossRef  Google Scholar 

  • Obata A, Kasuga T (2008) Surface modification of titanium by hydrothermal treatment. Key Eng Mater 361–363:609–612

    CrossRef  Google Scholar 

  • Obata A, Zhai T, Kasuga T (2008) Apatite-forming ability on titanium surface modified by hydrothermal treatment and ultraviolet irradiation. J Mater Res 23:3169–3175

    CrossRef  Google Scholar 

  • Oshida Y (2007) Bioscience and bioengineering of titanium materials. In: Oshida Y (ed). Oxford, Elsevier, pp 311–379

    Google Scholar 

  • Ott RT, Fan C, Li J et al (2003) Structure and properties of Zr–Ta–Cu–Ni–Al bulk metallic glasses and metallic glass matrix composites. J Non-Cryst Solids 317:158–163

    CrossRef  Google Scholar 

  • Pang S, Liu Y, Li H et al (2015) New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications. J Alloy Compd 625:323–327

    CrossRef  Google Scholar 

  • Park I, Woo T, Lee M et al (2006) Effects of anodizing voltage on the anodized and hydrothermally treated titanium surface. Met Mater Int 12:505–511

    CrossRef  Google Scholar 

  • Park JM, Na JH, Kim DH et al (2010) Medium range ordering and its effect on plasticity of Fe–Mn–B–Y–Nb bulk metallic glass. Philos Mag 90:2619–2633

    CrossRef  Google Scholar 

  • Pawlowski L (1999) Thick laser coatings: a review. J Therm Spray Tech 8:279–295

    CrossRef  Google Scholar 

  • Pellicer E, González S, Blanquer A et al (2013) On the biodegradability, mechanical behavior and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials. J Biomed Mater Res A 101:502–5017

    CrossRef  Google Scholar 

  • Qin FX, Wang XM, Inoue A (2007) Effect of annealing on microstructure and mechanical property of a Ti–Zr–Cu–Pd bulk metallic glass. Intermetallics 15:1337–1342

    CrossRef  Google Scholar 

  • Qin FX, Wang XM, Inoue A (2008) Distinct plastic strain of Ni-free Ti–Zr–Cu–Pd–Nb bulk metallic glasses. Intermetallics 16:1026–1030

    CrossRef  Google Scholar 

  • Qiu CL, Liu L, Sun M et al (2005) The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. J Biomed Mater Res A 75:950–956

    CrossRef  Google Scholar 

  • Riman RE, Suchanek WL, Lencka MM (2002) Hydrothermal crystallization of ceramics. Ann de Chimie Sci Matériaux 27:15–36

    CrossRef  Google Scholar 

  • Ritchie RO, Buehler MJ, Hansma P (2009) Plasticity and toughness in bone. Phys Today 62:41–47

    CrossRef  Google Scholar 

  • Schroers J, Kumar G, Hodges TM et al (2009) Bulk metallic glasses for biomedical applications. JOM 61:21–29

    CrossRef  Google Scholar 

  • Sheng HW, Luo WK, Alamgir FM et al (2006) Atomic packing and short-to-medium-range order in metallic glasses. Nature 439:419–425

    CrossRef  Google Scholar 

  • Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33

    CrossRef  Google Scholar 

  • Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater 23:407–415

    CrossRef  Google Scholar 

  • Uchida M, Kim H-M, Kokubo T et al (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res Part A 64A:164–170

    CrossRef  Google Scholar 

  • Ueda M, Uchibayashi Y, Otsuka-Yao-Matsuo S et al (2008) Hydrothermal synthesis of anatase-type TiO2 films on Ti and Ti–Nb substrates. J Alloys Compd 459:369–376

    CrossRef  Google Scholar 

  • Ueda M, Sasaki Y, Ikeda M et al (2009) Chemical-hydrothermal synthesis of bioinert ZrO2–TiO2 film on Ti substrates. Mater Trans 50:2104–2107

    CrossRef  Google Scholar 

  • Vernardou D, Vlachou K, Spanakis E et al (2009) Influence of solution chemistry on the properties of hydrothermally grown TiO2 for advanced applications. Catal Today 144:172–176

    CrossRef  Google Scholar 

  • Witte F (2010) The history of biodegradable magnesium implants: A review. Acta Biomater 6:1680–1692

    CrossRef  Google Scholar 

  • Wong MH, Cheng FT, Man HC (2007) In situ hydrothermal synthesis of oxide film on NiTi for improving corrosion resistance in Hanks’ solution. Scr Mater 56:205–208

    CrossRef  Google Scholar 

  • Xu LJ, Chen YY, Liu ZG et al (2008) The microstructure and properties of Ti–Mo–Nb alloys for biomedical application. J Alloy Compd 453:320–324

    CrossRef  Google Scholar 

  • Yamamoto D, Arii K, Kuroda K et al (2013) Osteoconductivity of superhydrophilic anodized TiO2 coatings on Ti treated with hydrothermal processes. J Biomater Nanobiotechnol 4:45–52

    CrossRef  Google Scholar 

  • Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    CrossRef  Google Scholar 

  • Zberg B, Uggowitzer PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Mater 8:887–891

    CrossRef  Google Scholar 

  • Zhang YM, Bataillon-Linez P, Huang P et al (2004) Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J Biomed Mater Res 68A:383–391

    CrossRef  Google Scholar 

  • Zhang LC, Das J, Lu HB et al (2007) High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr Mater 57:101–104

    CrossRef  Google Scholar 

  • Zhao L, Chang J, Zhai W (2005) Effect of crystallographic phases of TiO2 on hepatocyte attachment, proliferation and morphology. J Biomater Appl 19:237–252

    CrossRef  Google Scholar 

  • Zhou YL, Niinomi M (2008) Microstructures and mechanical properties of Ti-50 mass % Ta alloy for biomedical application. J Alloy Compd 466:535–542

    CrossRef  Google Scholar 

  • Zhu S, Xie G, Qin F et al (2012) Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity. J Mech Behav Biomed Mater 13:166–173

    CrossRef  Google Scholar 

  • Zhu SL, Wang XM, Inoue A (2008) Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters up to 1 cm. Intermetallics 16:1031–1035

    CrossRef  Google Scholar 

Download references

Acknowledgements

Financial support from the WIMB 543989-TEMPUS-1-2013-1-ES-TEMPUS-JPHES project from Education, Audiovisual and Culture Executive Agency (European Commission) is greatly acknowledged. E.P., J.F., M.D.B. and J.S. are also grateful to the 2014-SGR-1015 project from D.G.U. Catalunya. E.P. and J.S. acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) for the Ramon y Cajal contract (RYC-2012-10839) and the Juan de la Cierva fellowship (IJCI-2015-27030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Pellicer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Pellicer, E., Lorenzetti, M., Fornell, J., Baró, M.D., Novak, S., Sort, J. (2018). Progress Beyond the State-of-the-Art in the Field of Metallic Materials for Bioimplant Applications. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)