Advertisement

Progress Beyond the State-of-the-Art in the Field of Metallic Materials for Bioimplant Applications

  • Eva PellicerEmail author
  • Martina Lorenzetti
  • Jordina Fornell
  • Maria Dolors Baró
  • Sasa Novak
  • Jordi Sort
Chapter

Abstract

Metallic materials have attracted the interest from a wide research community including materials scientists, materials engineers, biologists and medical doctors for their use in the biomedical area. Some alloy compositions are already in use in the market but suffer from several shortcomings. For this reason, novel, optimized, non-toxic, biocompatible compositions are being continuously devised. This chapter first reviews and discusses the advantages of bulk metallic glasses (BMGs) for orthopaedic applications, with special emphasis on their mechanical properties. Examples of newly developed permanent Ti-based and biodegradable Mg-based materials are given. In the second part of this chapter, the surface engineering methods currently available to modify the surface of Ti alloys are discussed. The outermost material layer in contact with the surrounding tissue acts as the biointerface and, hence, if appropriately designed, it can provide enhanced mechanical and corrosion resistance to the bioimplant and prevent from ions leaching. Finally, the recent progress on the formation of nanostructured titania coatings by hydrothermal treatment on the surface of Ti-based alloys is analysed.

Keywords

Titanium alloys Magnesium alloys Bioimplants Hydrothermal treatment Nanostructured coatings 

Notes

Acknowledgements

Financial support from the WIMB 543989-TEMPUS-1-2013-1-ES-TEMPUS-JPHES project from Education, Audiovisual and Culture Executive Agency (European Commission) is greatly acknowledged. E.P., J.F., M.D.B. and J.S. are also grateful to the 2014-SGR-1015 project from D.G.U. Catalunya. E.P. and J.S. acknowledge the Spanish Ministerio de Economía y Competitividad (MINECO) for the Ramon y Cajal contract (RYC-2012-10839) and the Juan de la Cierva fellowship (IJCI-2015-27030).

References

  1. Argon AS, Kuo HY (1980) Free energy spectra for inelastic deformation of five metallic glass alloys. J Non-Cryst Solids 37:241–266CrossRefGoogle Scholar
  2. Barna PB, Adamik M (1995) Growth mechanisms of polycrystalline thin films. In: Matacotta FC, Ottaviani G (eds) Science and technology of thin films. World Scientific, Singapore, pp 1–28Google Scholar
  3. Barnard AS, Curtiss LA (2005) Prediction of TiO2 nanoparticle phase and shape transitions controlled by surface chemistry. Nano Lett 5:1261–1266CrossRefGoogle Scholar
  4. Baszkiewicz J, Krupa D, Mizera J et al (2005) Corrosion resistance of the surface layers formed on titanium by plasma electrolytic oxidation and hydrothermal treatment. Vacuum 78:143–147CrossRefGoogle Scholar
  5. Benning LG, Waychunas GA (2008) Kinetics of water-rock interaction. In: Brantley SL et al (eds). Springer, New York, pp 259–333Google Scholar
  6. Bosco R, Van Den Beucken J, Leeuwenburgh S et al (2012) Surface engineering for bone implants: a trend from passive to active surfaces. Coatings 2:95–119CrossRefGoogle Scholar
  7. Byrappa K, Adschiri T (2007) Hydrothermal technology for nanotechnology. Prog Cryst Growth Charact Mater 53:117–166CrossRefGoogle Scholar
  8. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology—A technology for crystal growth and materials processing. William Andrew Publishing/NoyesGoogle Scholar
  9. Calin M, Gebert A, Ghinea AC et al (2013) Designing biocompatible Ti-based metallic glasses for implant applications. Mater Sci Eng C 33:875–883CrossRefGoogle Scholar
  10. Chen Q, Chan KC, Liu L (2011) Tribological characterisation of Zr-based bulk metallic glass in simulated physiological media. Phil Mag 9:3705–3715CrossRefGoogle Scholar
  11. Cheng FT, Shi P, Man HC (2004) A preliminary study of TiO2 deposition on NiTi by a hydrothermal method. Surf Coat Technol 187:26–32CrossRefGoogle Scholar
  12. Cortizo MC, Lorenzo Fernández, de Mele M (2004) Cytoxocity of copper ions released from metal. Biol Trace Elem Res 102:129–141CrossRefGoogle Scholar
  13. De Yoreo JJ, Vekilov PG (2003) Principles of crystal nucleation and growth. Rev Mineral Geochem 54:57–93CrossRefGoogle Scholar
  14. Dhanaraj G et al (2010) Springer handbook of crystal growth, 1st ed. Springer, BerlinGoogle Scholar
  15. Dong X, Tao J, Li Y et al (2010) Oriented single crystalline TiO2 nano-pillar arrays directly grown on titanium substrate in tetramethylammonium hydroxide solution. Appl Surf Sci 256:2532–2538CrossRefGoogle Scholar
  16. Dozzi M, Selli E (2013) Specific facets-dominated anatase TiO2: fluorine-mediated synthesis and photoactivity. Catalysts 3:455–485CrossRefGoogle Scholar
  17. Drnovšek N, Daneu N, Rečnik A et al (2009) Hydrothermal synthesis of a nanocrystalline anatase layer on Ti6A4V implants. Surf Coat Technol 203:1462–1468CrossRefGoogle Scholar
  18. Drnovšek N, Rade K, Milačič R et al (2012) The properties of bioactive TiO2 coatings on Ti-based implants. Surf Coat Technol 209:177–183CrossRefGoogle Scholar
  19. Drnovsek N, Jerman UD, Romih R et al (2015) Improvement of osseointegration of Ti and Ti-alloys by hydrothermally prepared bioactive anatase coating. Int J Nano Biomater 6:18–28CrossRefGoogle Scholar
  20. Elias LM, Schneidera SG, Scheneidera S et al (2006) Microstructural and mechanical characterization of biomedical Ti–Nb–Zr(–Ta) alloys. Mater Sci Eng 432:108–112CrossRefGoogle Scholar
  21. Fornell J, Pellicer E, Van Steengerge N et al (2013) Improved plasticity and corrosion behavior in Ti–Zr–Cu–Pd metallic glass with minor additions of Nb: an alloy composition intended for biomedical applications. Mater Sci Eng A 559:159–164CrossRefGoogle Scholar
  22. Gao J, Sharp J, Guan D et al (2015) New compositional design for creating tough metallic glass composites with excellent work hardening. Acta Mater 86:208–215CrossRefGoogle Scholar
  23. Geetha M, Singh AK, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRefGoogle Scholar
  24. González S, Pellicer E, Fornell J et al (2012) Improved mechanical performance and delayed corrosión phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. J Mech Behav Biomed Mater 6:53–62CrossRefGoogle Scholar
  25. Gu X, Zheng Y, Zhong S et al (2010) Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses. Biomater 31:1093–1103CrossRefGoogle Scholar
  26. Han JH, Park DH, Bang CW et al (2009) Sn effect on microstructure and mechanical properties of ultrafine eutectic Ti–Fe–Sn alloys. J Alloy Compd 483:44–46CrossRefGoogle Scholar
  27. Hanaor DH, Sorrell C (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRefGoogle Scholar
  28. Hanawa T (1999) In vivo metallic biomaterials and surface modification. Mater Sci Eng A 267:260–266CrossRefGoogle Scholar
  29. He G, Eckert J, Löser W et al (2003) Novel Ti-base nanostructure-dendrite composite with enhanced placticity. Nature Mater 2:33–37CrossRefGoogle Scholar
  30. Huang L, Cao Z, Meyer HM et al (2011) Reponses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: effects of composition and roughness. Acta Biomater 7:395–405CrossRefGoogle Scholar
  31. Hynowska A, Blanquer A, Pellicer E et al (2013) Novel Ti–Zr–Hf–Fe nanostructured alloy for biomedical applications. Materials 6:4930–4945CrossRefGoogle Scholar
  32. Jolivet JP, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, NJGoogle Scholar
  33. Kühn U, Mattern N, Gebert A et al (2006) Ductile Ti-based nanocrystalline matrix composites. Intermetallics 14:978–981CrossRefGoogle Scholar
  34. Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20:5–50CrossRefGoogle Scholar
  35. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409CrossRefGoogle Scholar
  36. Lencka MM, Riman RE (2003) Crystal growth technology. In: Byrappa K, Ohachi T (eds). William Andrew Publishing, Norwich, NY, pp 271–297Google Scholar
  37. Li S, Ye G, Chen G (2009) Low-temperature preparation and characterization of nanocrystalline anatase TiO2. J Phys Chem C 113:4031–4037CrossRefGoogle Scholar
  38. Li HF, Pang SJ, Liu Y et al (2015) Biodegradable Mg–Zn–Ca–Zr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Mater Des 67:9–19CrossRefGoogle Scholar
  39. Liu X, Chu PK, Ding C (2004) Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R Rep 47:49–121CrossRefGoogle Scholar
  40. Lorenzetti M, Pellicer E, Sort J et al (2014a) Improvement to the corrosion resistance of Ti-based implants using hydrothermally synthesized nanostructured anatase coatings. Materials 7:180–194CrossRefGoogle Scholar
  41. Lorenzetti M, Biglino D, Novak S et al (2014b) Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C 37:390–398CrossRefGoogle Scholar
  42. Lorenzetti M, Dakischew O, Trinkaus K et al (2015) Enhanced osteogenesis on titanium implants by UVB photofunctionalization of hydrothermally grown TiO2 coatings. J Biomater Appl 30:71–84CrossRefGoogle Scholar
  43. Lu ZP, Liu CT (2002) A new glass-forming ability criterion for bulk metallic glasses. Acta Mater 50:3501–3512CrossRefGoogle Scholar
  44. Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, OxfordGoogle Scholar
  45. Miracle DB (2004) A structural model for metallic glasses. Nat Mater 3:697–702CrossRefGoogle Scholar
  46. Morrison ML, Buchanan RA, Peker A (2007) Electrochemical behavior of a Ti-based bulk metallic glass. J Non-Cryst Solids 353:2115–2124CrossRefGoogle Scholar
  47. Naga S, Banerjee R, Frasera HL (2005) Microstructural evolution and strengthening mechanisms in Ti–Nb–Zr–Ta, Ti–Mo–Zr–Fe and Ti–Mo biocompatible alloys. Mater Sci Eng 25:357–362CrossRefGoogle Scholar
  48. Neupane MP, Park IS, Lee MH (2014) Surface characterization and corrosion behavior of micro-arc oxidized Ti surface modified with hydrothermal treatment and chitosan coating. Thin Solid Films 550:268–271CrossRefGoogle Scholar
  49. Nouri A, Hodgson PD, Wen CE (2010) Effect of process control agent on the porous structure and mechanical properties of a biomedical Ti–Sn–Nb alloy produced by powder metallurgy. Acta Biomater 6:1630–1639CrossRefGoogle Scholar
  50. Oak J-J, Inoue A (2007) Attempt to develop Ti-based amorphous alloys for biomaterials. Mater Sci Eng A 449–451:220–224CrossRefGoogle Scholar
  51. Oak J-J, Inoue A (2008) Formation, mechanical properties and corrosion resistance of Ti-Pd base glassy alloys. J Non-Cryst Solids 354:1828–1832CrossRefGoogle Scholar
  52. Obata A, Kasuga T (2008) Surface modification of titanium by hydrothermal treatment. Key Eng Mater 361–363:609–612CrossRefGoogle Scholar
  53. Obata A, Zhai T, Kasuga T (2008) Apatite-forming ability on titanium surface modified by hydrothermal treatment and ultraviolet irradiation. J Mater Res 23:3169–3175CrossRefGoogle Scholar
  54. Oshida Y (2007) Bioscience and bioengineering of titanium materials. In: Oshida Y (ed). Oxford, Elsevier, pp 311–379Google Scholar
  55. Ott RT, Fan C, Li J et al (2003) Structure and properties of Zr–Ta–Cu–Ni–Al bulk metallic glasses and metallic glass matrix composites. J Non-Cryst Solids 317:158–163CrossRefGoogle Scholar
  56. Pang S, Liu Y, Li H et al (2015) New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications. J Alloy Compd 625:323–327CrossRefGoogle Scholar
  57. Park I, Woo T, Lee M et al (2006) Effects of anodizing voltage on the anodized and hydrothermally treated titanium surface. Met Mater Int 12:505–511CrossRefGoogle Scholar
  58. Park JM, Na JH, Kim DH et al (2010) Medium range ordering and its effect on plasticity of Fe–Mn–B–Y–Nb bulk metallic glass. Philos Mag 90:2619–2633CrossRefGoogle Scholar
  59. Pawlowski L (1999) Thick laser coatings: a review. J Therm Spray Tech 8:279–295CrossRefGoogle Scholar
  60. Pellicer E, González S, Blanquer A et al (2013) On the biodegradability, mechanical behavior and cytocompatibility of amorphous Mg72Zn23Ca5 and crystalline Mg70Zn23Ca5Pd2 alloys as temporary implant materials. J Biomed Mater Res A 101:502–5017CrossRefGoogle Scholar
  61. Qin FX, Wang XM, Inoue A (2007) Effect of annealing on microstructure and mechanical property of a Ti–Zr–Cu–Pd bulk metallic glass. Intermetallics 15:1337–1342CrossRefGoogle Scholar
  62. Qin FX, Wang XM, Inoue A (2008) Distinct plastic strain of Ni-free Ti–Zr–Cu–Pd–Nb bulk metallic glasses. Intermetallics 16:1026–1030CrossRefGoogle Scholar
  63. Qiu CL, Liu L, Sun M et al (2005) The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. J Biomed Mater Res A 75:950–956CrossRefGoogle Scholar
  64. Riman RE, Suchanek WL, Lencka MM (2002) Hydrothermal crystallization of ceramics. Ann de Chimie Sci Matériaux 27:15–36CrossRefGoogle Scholar
  65. Ritchie RO, Buehler MJ, Hansma P (2009) Plasticity and toughness in bone. Phys Today 62:41–47CrossRefGoogle Scholar
  66. Schroers J, Kumar G, Hodges TM et al (2009) Bulk metallic glasses for biomedical applications. JOM 61:21–29CrossRefGoogle Scholar
  67. Sheng HW, Luo WK, Alamgir FM et al (2006) Atomic packing and short-to-medium-range order in metallic glasses. Nature 439:419–425CrossRefGoogle Scholar
  68. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33CrossRefGoogle Scholar
  69. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Mater 23:407–415CrossRefGoogle Scholar
  70. Uchida M, Kim H-M, Kokubo T et al (2003) Structural dependence of apatite formation on titania gels in a simulated body fluid. J Biomed Mater Res Part A 64A:164–170CrossRefGoogle Scholar
  71. Ueda M, Uchibayashi Y, Otsuka-Yao-Matsuo S et al (2008) Hydrothermal synthesis of anatase-type TiO2 films on Ti and Ti–Nb substrates. J Alloys Compd 459:369–376CrossRefGoogle Scholar
  72. Ueda M, Sasaki Y, Ikeda M et al (2009) Chemical-hydrothermal synthesis of bioinert ZrO2–TiO2 film on Ti substrates. Mater Trans 50:2104–2107CrossRefGoogle Scholar
  73. Vernardou D, Vlachou K, Spanakis E et al (2009) Influence of solution chemistry on the properties of hydrothermally grown TiO2 for advanced applications. Catal Today 144:172–176CrossRefGoogle Scholar
  74. Witte F (2010) The history of biodegradable magnesium implants: A review. Acta Biomater 6:1680–1692CrossRefGoogle Scholar
  75. Wong MH, Cheng FT, Man HC (2007) In situ hydrothermal synthesis of oxide film on NiTi for improving corrosion resistance in Hanks’ solution. Scr Mater 56:205–208CrossRefGoogle Scholar
  76. Xu LJ, Chen YY, Liu ZG et al (2008) The microstructure and properties of Ti–Mo–Nb alloys for biomedical application. J Alloy Compd 453:320–324CrossRefGoogle Scholar
  77. Yamamoto D, Arii K, Kuroda K et al (2013) Osteoconductivity of superhydrophilic anodized TiO2 coatings on Ti treated with hydrothermal processes. J Biomater Nanobiotechnol 4:45–52CrossRefGoogle Scholar
  78. Yang HG, Sun CH, Qiao SZ et al (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  79. Zberg B, Uggowitzer PJ, Löffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Mater 8:887–891CrossRefGoogle Scholar
  80. Zhang YM, Bataillon-Linez P, Huang P et al (2004) Surface analyses of micro-arc oxidized and hydrothermally treated titanium and effect on osteoblast behavior. J Biomed Mater Res 68A:383–391CrossRefGoogle Scholar
  81. Zhang LC, Das J, Lu HB et al (2007) High strength Ti–Fe–Sn ultrafine composites with large plasticity. Scr Mater 57:101–104CrossRefGoogle Scholar
  82. Zhao L, Chang J, Zhai W (2005) Effect of crystallographic phases of TiO2 on hepatocyte attachment, proliferation and morphology. J Biomater Appl 19:237–252CrossRefGoogle Scholar
  83. Zhou YL, Niinomi M (2008) Microstructures and mechanical properties of Ti-50 mass % Ta alloy for biomedical application. J Alloy Compd 466:535–542CrossRefGoogle Scholar
  84. Zhu S, Xie G, Qin F et al (2012) Ni- and Be-free Zr-based bulk metallic glasses with high glass-forming ability and unusual plasticity. J Mech Behav Biomed Mater 13:166–173CrossRefGoogle Scholar
  85. Zhu SL, Wang XM, Inoue A (2008) Glass-forming ability and mechanical properties of Ti-based bulk glassy alloys with large diameters up to 1 cm. Intermetallics 16:1031–1035CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Eva Pellicer
    • 1
    Email author
  • Martina Lorenzetti
    • 2
  • Jordina Fornell
    • 1
  • Maria Dolors Baró
    • 1
  • Sasa Novak
    • 2
    • 3
  • Jordi Sort
    • 1
    • 4
  1. 1.Departament de Física, Facultat de CiènciesUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Department for Nanostructured MaterialsJožef Stefan InstituteLjubljanaSlovenia
  3. 3.Jožef Stefan International Postgraduate SchoolLjubljanaSlovenia
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BellaterraSpain

Personalised recommendations