Skip to main content

Bioactive Biomaterials: Potential for Application in Bone Regenerative Medicine

Abstract

Critical-sized bone defects can be repaired by using bone tissue engineering (BTE) procedures which rely on the combined use of cells, scaffolds and biologically active molecules. Based on their bioreactivity, biomaterials can be bioinert or bioactive. Bioinert biomaterials cause fibrous capsule formation upon implantation which favors the appearance of micromovements in the implant-tissue interface so the prosthesis fails. Bioactive biomaterials elicit a specific biological response thus avoiding fibrous layer formation and are able to interact with the biological environment. Bioactive biomaterials can be natural (bovine bone mineral matrix, hyaluronic acid, collagen, gelatin, fibrin, agarose, alginate, chitosan, silk) or synthetic (ceramics, metals, polymers, hydrogels and composites). Ceramics (bioactive glasses, glass–ceramics, calcium phosphates ceramics and cements) are most frequently used among these biomaterials due to similarity with the bone mineral phase. Another advantage from the use of ceramics is the presence of biologically active hydroxycarbonate apatite layer formed on the surface of these biomaterials, which represents the bonding interface with the tissues. Bioactive biomaterials have wide application as medical devices and in drug delivery systems. Since cells cannot survive without an adequate blood supply, future directions in bioactive biomaterials applications lies in the construction of bioactive and biodegradable 3D scaffolds that have osteogenic and angiogenic features. A possible alternative to improve osteogenic and angiogenic potential of the applied biomaterials is to incorporate bioactive biomolecules (e.g. growth factors) into the scaffold. One of the future perspectives in this area is the construction of smart biomaterials that respond to their environment in predetermined way regarding the protein release, thus allowing release initiated by microenvironmental conditions.

Keywords

  • Bioactive biomaterials
  • Osteoinduction
  • Osteoconduction
  • Natural bone substitute
  • Ceramics
  • Implantation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68025-5_12
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68025-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

References

  • Acharya S, Sahoo SK (2011) PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev 63(3):170–183

    CrossRef  Google Scholar 

  • Aksay IA, Weiner S (1998) Biomaterials-is this really a field of research? Curr Opin Solid State Mater Sci 3(3):219–220

    CrossRef  Google Scholar 

  • Allo BA, Costa DO, Dixon SJ et al (2012) Bioactive and biodegradable nanocomposites and hybrid biomaterials for bone regeneration. J Funct Biomater 3(2):432–463

    CrossRef  Google Scholar 

  • Alsberg E, Anderson KW, Albeiruti A et al (2002) Engineering growing tissues. Proc Natl Acad Sci USA 99:12025–12030

    CrossRef  Google Scholar 

  • Anderson DG, Burdick JA, Langer R (2004) Materials science. Smart biomaterials. Science 305(5692):1923–1924

    CrossRef  Google Scholar 

  • Avnir D, Klein LC, Levy D et al (1997) Organo-silica Sol–gel materials. In: Apeloig Y, Rappoport Z (eds) The chemistry of organosilicon compounds—part 2. Wiley& Sons, Chichester

    Google Scholar 

  • Awad HA, Wickham MQ, Leddy HA et al (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25(16):3211–3222

    CrossRef  Google Scholar 

  • Bala I, Hariharan S, Kumar MR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21(5):387–422

    CrossRef  Google Scholar 

  • Bergman S, Litkowski L (1995) Bone in-fill of non-healing calvarial defects using particulate bioglass and autogenous bone. In: Wilson J, Hench LL, Greenspan D (eds) Bioceramics. Elsevier Science, Tarrytown, New York, pp 17–21

    Google Scholar 

  • Biggs MJ, Richards RG, Gadegaard N et al (2007) The effects of nanoscale pits on primary human osteoblast adhesion formation and cellular spreading. J Mater Sci Mater Med 18(2):399–404

    CrossRef  Google Scholar 

  • Bishop AT, Pelzer M (2007) Vascularized bone allotransplantation: current state and implications for future reconstructive surgery. Orthop Clin North Am 38(1):109–122

    CrossRef  Google Scholar 

  • Blom EJ, Klein-Nulend J, Yin L et al (2001) Transforming growth factor-β1 incorporated in calcium phosphate cement stimulates osteotransductivity in rat calvarial bone defects. Clin Oral Implants Res 12(6):609–616

    CrossRef  Google Scholar 

  • Boanini E, Torricelli P, Gazzano M et al (2008) Alendronate–hydroxyapatite nanocomposites and their interaction with osteoclasts and osteoblast-like cells. Biomaterials 29(7):790–796

    CrossRef  Google Scholar 

  • Bökel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3(3):311–321

    CrossRef  Google Scholar 

  • Botchwey EA, Dupree MA, Pollack SR et al (2003) Tissue engineered bone: measurement of nutrient transport in threedimensional matrices. J Biomed Mater Res A 67(1):357–367

    CrossRef  Google Scholar 

  • Brånemark R, Brånemark PI, Rydevik B et al (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181

    Google Scholar 

  • Brinker CJ, Raman NK, Logan MN et al (1995) Structure-property relationships in thin films and membranes. J Sol–Gel Sci Technol 4(2):117–135

    CrossRef  Google Scholar 

  • Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359

    CrossRef  Google Scholar 

  • Cao W, Hench LL (1996) Bioactive Materials. Ceram Int 22:493–507

    CrossRef  Google Scholar 

  • Castner DG, Ratner BD (2002) Biomedical surface science: foundations to frontiers. Surf Sci 500(1):28–60

    CrossRef  Google Scholar 

  • Chau D, Agashi K, Shakesheff K (2008) Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Mater Sci Technol 24(9):1031–1044

    CrossRef  Google Scholar 

  • Cornejo A, Sahar DE, Stephenson SM et al (2012) Effect of adipose tissue-derived osteogenic and endothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A 18(15–16):1552–1561

    CrossRef  Google Scholar 

  • Cvetković VJ, Najdanović JG, Vukelić-Nikolić MĐ et al (2015) Osteogenic potential of in vitro osteoinduced adipose-derived mesenchymal stem cells combined with platelet-rich plasma in ectopic model. Int Orthop 39(11):2173–2180

    CrossRef  Google Scholar 

  • Čolić M, Džopalić T, Tomić S et al (2014) Immunomodulatory effects of carbon nanotubes functionalized with a toll-like receptor 7 agonist on human dendritic cells. Carbon 67:273–287

    CrossRef  Google Scholar 

  • Daculsi G, LeGeros RZ, Heughebaert M et al (1990) Formation of carbonateapatite crystals after implantation of calciumphosphate ceramics. Calcif Tissue Int 46(1):20–27

    CrossRef  Google Scholar 

  • Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949

    Google Scholar 

  • Davis ME, Hsieh PCH, Grodzinsky AJ et al (2005) Custom design of the cardiac microenvironment with biomaterials. Circ Res 97(1):8–15

    CrossRef  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3(2):133–149

    CrossRef  Google Scholar 

  • De Jonge LT, van den Beucken JJ, Leeuwenburgh SC et al (2009) In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings. Acta Biomater 5(7):2773–2782

    CrossRef  Google Scholar 

  • Friedman CD, Costantino PD, Jones K et al (1991) Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch Otolaryngol Head Neck Surg 117(4):385–389

    CrossRef  Google Scholar 

  • Fu Q, Rahaman MN, Bal BS et al (2010a) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A 95(1):172–179

    CrossRef  Google Scholar 

  • Fu Q, Rahaman MN, Fu H et al (2010b) Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 95(1):164–171

    CrossRef  Google Scholar 

  • Furth ME, Atala A, Van Dyke ME (2007) Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials 28(34):5068–5073

    CrossRef  Google Scholar 

  • Ge Z, Baguenard S, Lim LY et al (2004) Hydroxyapatitechitin materials as potential tissue engineered bone substitutes. Biomaterials 25:1049

    CrossRef  Google Scholar 

  • Gentile P, Chiono V, Tonda-Turo C et al (2011) Polymeric membranes for guided bone regeneration. Biotechnol J 6(10):1187–1197

    CrossRef  Google Scholar 

  • Ginebra MP, Traykova T, Planell J (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Controlled Release 113(2):102–110

    CrossRef  Google Scholar 

  • Goldberg M, Smith AJ (2004) Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 15(1):13–27

    CrossRef  Google Scholar 

  • Goldberg M, Lacerda-Pinheiro S, Jegat N et al (2006) The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent Clin North Am 50(2):277–298

    CrossRef  Google Scholar 

  • Goodman SB, Yao Z, Keeney M et al (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183

    CrossRef  Google Scholar 

  • Green DW, Ben-Nissan B, Yoon K-S et al (2016) Bioinspired materials for regenerative medicine: going beyond the human archetypes. J Mater Chem B 4(14):2396–2406

    CrossRef  Google Scholar 

  • Griffith CK, Miller C, Sainson RC et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11(1–2):257–266

    CrossRef  Google Scholar 

  • Grotra D, Subbarao CV (2012) Bioactive materials used in endodontics. Rec Res Sci Tech 4(6):25–27

    Google Scholar 

  • Guo D, Xu K, Zhao X et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083

    CrossRef  Google Scholar 

  • Han G, Ghosh P, Rotello VM (2007) Multi-functional gold nanoparticles for drug delivery. Adv Exp Med Biol 620:48–56

    CrossRef  Google Scholar 

  • He X, Liu Y, Yuan X et al (2014) Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS ONE 9:e104061. doi:10.1371/journal.pone.0104061

    CrossRef  Google Scholar 

  • Healy KE, Guldberg RE (2007) Bone tissue engineering. J Musculoskelet Neuronal Interact 7(4):328–330

    Google Scholar 

  • Hege CS, Schiller SM (2015) New bioinspired materials for regenerative medicine. Curr Mol Bio Rep 1(2):77–86

    CrossRef  Google Scholar 

  • Hench LL (1980) Biomaterials. Science 208(4446):826–831

    CrossRef  Google Scholar 

  • Hench LL (1998a) Bioactive materials: the potential for tissue regeneration. J Biomed Mater Res 41(4):511–518

    CrossRef  Google Scholar 

  • Hench LL (1998b) Bioceramics. J Am Ceram Soc 81(7):1705–1728

    CrossRef  Google Scholar 

  • Hench LL, Orefice R (1997) Sol–gel technology. In: Kirk-Othmer encyclopedia of chemical technology, 4th edn, vol 22. Wiley, New York, p 497

    Google Scholar 

  • Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1107

    CrossRef  Google Scholar 

  • Hench LL, West JK (1996) Biological applications of bioactive glasses. Life Chem Rep 13:187–241

    Google Scholar 

  • Hench LL, Splinter RJ, Allen WC et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141

    CrossRef  Google Scholar 

  • Hench LL, Andersson OH, LaTorre GP (1991) The kinetics of bioactive ceramics part III: surface reactions for bioactive glasses compared with an inactive glass. Bioceramics 4:156–162

    Google Scholar 

  • Huang X, Bai S, Lu Q et al (2014) Osteoinductive-nanoscaled silk/HA composite scaffolds for bone tissue engineering application. J Biomed Mater Res B Appl Biomater 103(7):1–13

    Google Scholar 

  • Huang X, Jain PK, El-Sayed IH et al (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine (Lond) 2(5):681–693

    CrossRef  Google Scholar 

  • Ignjatović N, Uskoković V, Ajduković Z et al (2013) Multifunctional hydroxyapatite and poly (D, L-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Mater Sci Eng C Mater Biol Appl 33(2):943–950

    CrossRef  Google Scholar 

  • Jarcho M, Kay JL, Gumaer RH et al (1977) Tissue, cellular and subcellular events at bone–ceramic hydroxyapatite interface. J Bioeng 1(2):79–92

    Google Scholar 

  • Jazayeri HE, Tahriri M, Razavi M et al (2017) A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C Mater Biol Appl 70(Pt 1):913–929

    CrossRef  Google Scholar 

  • Jones JR (2009) New trends in bioactive scaffolds: the importance of nanostructure. J Eur Ceram Soc 29(7):1275–1281

    CrossRef  Google Scholar 

  • Karande TS, Ong JL, Agrawal CM (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32(12):1728–1743

    CrossRef  Google Scholar 

  • Karfeld-Sulzer LS, Weber FE (2012) Biomaterial development for oral and maxillofacial bone regeneration. J Korean Assoc Oral Maxillofac Surg 38(5):264–270

    CrossRef  Google Scholar 

  • Kato K, Eika Y, Ikada Y (1996) Deposition of hydroxiapatite thin layer onto a polymer surface carrying grafted phosphate polymer chains. J Biomed Mater Res 32(4):687–691

    CrossRef  Google Scholar 

  • Keeting PE, Oursler MJ, Wiegand KE et al (1992) Zeolite A increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Mineral Res 7(11):1281–1289

    CrossRef  Google Scholar 

  • Keshaw H, Forbes A, Day RM (2005) Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass. Biomaterials 26(19):4171–4179

    CrossRef  Google Scholar 

  • Kim IS, Park JW, Kwon IC et al (2002) Role of BMP, betaig-h3, and chitosan in early bony consolidation in distraction osteogenesis in a dog model. Plast Reconstr Surg 109:1966

    CrossRef  Google Scholar 

  • Kim KK, Pack DW (2006) Microspheres for drug delivery. In: Ferrari M, Lee AP, Lee LJ (eds) BioMEMS and Biomed Nanotechnol. Springer, New York, pp 19–50

    CrossRef  Google Scholar 

  • Kim S, Ku SH, Lim SY et al (2011) Graphene–biomineral hybridmaterials. Adv Mater 23(17):2009–2014

    CrossRef  Google Scholar 

  • Kirby GT, White LJ, Rahman CV et al (2011) PLGA-based microparticles for the sustained release of BMP-2. Polymers 3(1):571–586

    CrossRef  Google Scholar 

  • Kostic M, Krunic N, Nikolic L et al (2011) Influence of residual monomer reduction on acrylic denture base resins quality. Hemijska industrija 65(2):171–177

    CrossRef  Google Scholar 

  • Kokubo T (1990) Surface chemistry of bioactive glass-ceramics. J Non-Cryst Solids 120(1–3):138–151

    CrossRef  Google Scholar 

  • Kokubo T, Shigematsu M, Nagashima Y et al (1982) Apatite- and wollastonite-containing glass-ceramics for prosthetic application. Bull Inst Chem Res Kyoto Univ 60(3–4):260–268

    Google Scholar 

  • Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24(13):2161–2175

    CrossRef  Google Scholar 

  • Krunić N, Lj Nikolić, Kostić M et al (2011) In vitro examination of oral tissue conditioners potential toxicity. Chem Ind 65(6):697–706

    CrossRef  Google Scholar 

  • Kyllönen L, D’Este M, Alini M et al (2015) Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 11:412–434

    CrossRef  Google Scholar 

  • Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428:487–492

    Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    CrossRef  Google Scholar 

  • Lee JH, Ko IH, Jeon SH et al (2011) Localized drugs delivery hydroxyapatite microspheres for osteoporosis therapy. In: Proceedings of SPIE, biosens nanomed IV: 8099 of 80990K, San Diego, Calif, USA

    Google Scholar 

  • LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthopaed Related Res 395:81–98

    CrossRef  Google Scholar 

  • Levingstone TJ, Matsiko A, Dickson GR et al (2014) biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004

    CrossRef  Google Scholar 

  • Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24(5):414–422

    CrossRef  Google Scholar 

  • Li J, Hsu Y, Luo E et al (2011) Computer-aided design and manufacturing and rapid prototyped nanoscale hydroxyapatite/polyamide (n-HA/PA) construction for condylar defect caused by mandibular angle ostectomy. Aesthet Plast Surg 35(4):636–640

    CrossRef  Google Scholar 

  • Li M, Liu X, Ge B (2010) Calcium phosphate cement with BMP-2-loaded gelatin microspheres enhances bone healing in osteoporosis: a pilot study. Clin Orthop Relat Res 468(7):1978–1985

    CrossRef  Google Scholar 

  • Liu Y, Enggist L, Kuffer AF et al (2007) The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration. Biomaterials 28(16):2677–2686

    CrossRef  Google Scholar 

  • Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    CrossRef  Google Scholar 

  • Liu Z, Robinson JT, Tabakman SM et al (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14(7–8):316–323

    CrossRef  Google Scholar 

  • Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38

    CrossRef  Google Scholar 

  • Loty C, Sautier JM, Boulekbache H et al (2000) In vitro bone formation on a bonelike apatite layer prepared by a biomimetic process on a bioactive glass-ceramic. J Biomed Mater Res 49(4):423–434

    CrossRef  Google Scholar 

  • Lu HH, Tang A, Oh SC et al (2005) Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Biomaterials 26(32):6323–6334

    CrossRef  Google Scholar 

  • Lutolf MP, Weber FE, Schmoekel HG et al (2003) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21(5):513–518

    CrossRef  Google Scholar 

  • Ma Z, Gao C, Gong Y et al (2002) Immobilization of natural macromolecules on poly-L-lactic acid membrane surface in order to improve its cytocompatibility. J Biomed Mater Res 63(6):838–847

    CrossRef  Google Scholar 

  • Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 3(3):1377–1397

    CrossRef  Google Scholar 

  • Marchesan S, Prato M (2013) Nanomaterials for (Nano)medicine. ACS Med Chem Lett 4(2):147–149

    CrossRef  Google Scholar 

  • Marion NW, Liang W, Reilly GC et al (2005) Borate glass supports the in vitro osteogenic differentiation of human mesenchymal stem cells. Mech Adv Mater Struct 12(3):239–246

    CrossRef  Google Scholar 

  • Mauth C, Huwig A, Graf-Hausner U et al (2007) Restorative applications for dental pulp therapy. In: Ashammakhi N, Reis RL, Chiellini (eds) Topics in tissue engineering, vol 3, pp 1–30

    Google Scholar 

  • Minelli EB, Benini A (2007) PMMA as drug delivery system and in vivo release from spacers. In: Romano C, Crosby L, Hofmann G, Meani E (eds) Infection and local treatment in orthopedic surgery. Springer, New York, pp 79–91

    CrossRef  Google Scholar 

  • Najdanović JG, Cvetković VJ, Stojanović S et al (2015) The influence of adipose-derived stem cells induced into endothelial cells on ectopic vasculogenesis and osteogenesis. Cell Mol Bioeng 8(4):577–590

    CrossRef  Google Scholar 

  • Najdanović JG, Cvetković VJ, Stojanović S et al (2016) Effects of bone tissue engineering triad components on vascularization process: comparative gene expression and histological evaluation in an ectopic bone-forming model. Biotechnol Biotechnol Equip 30(6):1122–1131

    Google Scholar 

  • Najman SJ, Cvetković VJ, Najdanović JG et al (2016) Ectopic osteogenic capacity of freshly isolated adipose-derived stromal vascular fraction cells supported with platelet-rich plasma: a simulation of intraoperative procedure. J Craniomaxillofac Surg 44(10):1750–1760

    CrossRef  Google Scholar 

  • Narmoneva DA, Oni O, Sieminski AL et al (2005) Self-assembling short oligopeptides and the promotion of angiogenesis. Biomaterials 26(23):4837–4846

    CrossRef  Google Scholar 

  • Navarro M, Michiardi A, Castaño O et al (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158

    CrossRef  Google Scholar 

  • Nayak TR, Andersen H, Makam VS et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6):4670–4678

    CrossRef  Google Scholar 

  • Neut D, Hendriks JG, van Horn JR et al (2005) Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement. Acta Orthop 76(1):109–114

    CrossRef  Google Scholar 

  • Odabasoglu F, Yildirim OS, Aygun H et al (2012) Diffractaic acid, a novel proapoptotic agent, induces with olive oil both apoptosis and antioxidative systems in Ti-implanted rabbits. Eur J Pharmacol 674(2–3):171–178

    CrossRef  Google Scholar 

  • Oguntebi B, Clark A, Wilson J (1993) Pulp capping with bioglass and autologous demineralized dentin in miniature swine. J Dent Res 72(2):484–489

    CrossRef  Google Scholar 

  • Ohtsuki C, Kamitakahara M, Miyazaki T (2009) Bioactive ceramic-based materials with designed reactivity for bone tissue regeneration. J R Soc Interface 6(Suppl 3):S349–S360

    CrossRef  Google Scholar 

  • O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinicean overview. Tissue Eng Part B Rev 17(6):389–392

    CrossRef  Google Scholar 

  • Oonishi H, Kushitani S, Iwaki H (1995) Comparative bone formation in several kinds of bioceramic granules. In: Wilson J, Hench LL, Greenspan D (eds) Eighth international symposium on ceramics in medicine. Elsevier Science Ltd, Tokyo, pp 137–144

    Google Scholar 

  • Oonishi H, Kushitani S, Yasukawa E et al (1997) Particulate bioglass compared with hydroxyapatite as a bone g raft substitute. J Clin Orthop Rel Res 334:316–325

    Google Scholar 

  • Pereira MM, Hench LL (1996) Mechanisms of hydroxyapatite formation on porous gel-silica matrices. J Sol–Gel Sci Technol 7(1):59–64

    CrossRef  Google Scholar 

  • Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel derived bioactive glasses in vitro. J Biomed Mater Res 28(6):693–698

    CrossRef  Google Scholar 

  • Piotrowski G, Hench LL, Allen WC et al (1975) Mechanical studies of the bone bioglass interfacial bond. J Biomed Mater Res 9(4):47–61

    CrossRef  Google Scholar 

  • Puleo DA, Nanci A (1999) Understanding and controlling the bone–implant interface. Biomaterials 20(23–24):2311–2321

    CrossRef  Google Scholar 

  • Pyo SW, Kim YM, Kim CS et al (2014) Bone formation on biomimetic calcium phosphate-coated and zoledronate-immobilized titanium implants in osteoporotic rat tibiae. Int J Oral Maxillofac Implants 29(2):478–484

    CrossRef  Google Scholar 

  • Rajković J, Stojanović S, Đorđević L et al (2015) Locally applied cholecalciferol and alfacalcidol act differently on healing of femur defects filled with bone mineral matrix and platelet-rich plasma in ovariectomized rats. Biotechnol Biotechnol Equip 29(5):963–969

    CrossRef  Google Scholar 

  • Ratner BD, Hoffman AS, Schoen FJ et al (2004) Biomaterials science: an introduction to materials in medicine, 2nd edn. Academic Press, New York

    Google Scholar 

  • Rejda BV, Peelen JGJ, de Groot K (1977) Tricalcium phosphate as a bone substitute. J Bioeng 1(2):93–97

    Google Scholar 

  • Roberts HW, Toth JM, Berzins DW et al (2008) Mineral trioxide aggregate material use in endodontic treatment: a review of the literature. Dent Mater 24(2):149–164

    CrossRef  Google Scholar 

  • Sachse A, Wagner A, Keller M et al (2005) Osteointegration of hydroxyapatite-titanium implants coated with nonglycosylated recombinant human bone morphogenetic protein-2(BMP-2) in aged sheep. Bone 37(5):699–710

    CrossRef  Google Scholar 

  • Sadat Tabatabaei Mirakabad F, Nejati-Koshki K, Akbarzadeh A et al (2014) PLGA-based nanoparticles as cancer drug delivery systems. Asian Pac J Cancer Prev 15(2):517–535

    CrossRef  Google Scholar 

  • Salem AK, Stevens R, Pearson RG et al (2002) Interactions of 3T3 fibroblasts and endothelial cells with defined pore features. J Biomed Mater Res 61(2):212–217

    CrossRef  Google Scholar 

  • Salinas AJ, Vallet-Regı M (2013) Bioactive ceramics: from bone grafts to tissue engineering. RSC Advances 3(28):1116–1131

    CrossRef  Google Scholar 

  • Salinas AJ, Esbrit P, Vallet-Regí M (2013) A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci 1(1):40–51

    CrossRef  Google Scholar 

  • Schek RM, Taboas JM, Hollister SJ et al (2005) Tissue engineering osteochondral implants for temporomandibular joint repair. Orthod Craniofacial Res 8(4):313–319

    CrossRef  Google Scholar 

  • Schepers E, de Clercq M, Ducheyne P et al (1991) Bioactive glass particulate material as a filler for bone lesions. J Oral Rehabil 18(5):439–452

    CrossRef  Google Scholar 

  • Schouten C, van den Beucken JJ, Meijer GJ et al (2010) In vivo bioactivity of DNA-based coatings: an experimental study in rats. J Biomed Mater Res A 92(3):931–941

    Google Scholar 

  • Schroeder JE, Mosheiff R (2011) Tissue engineering approaches for bone repair: concepts and evidence. Injury 42(5):609–613

    CrossRef  Google Scholar 

  • Seitz TL, Noonan KD, Hench LL et al (1982) Effect of fibronectin on the adhesion of an established cell line to a surface reactive biomaterial. J Biomed Mater Res 16(3):195–207

    CrossRef  Google Scholar 

  • Seshima H, Yoshinari M, Takemoto S et al (2006) Control of bisphosphonate release using hydroxyapatite granules. J Biomed Mater Res B Appl Biomater 78(2):215–221

    CrossRef  Google Scholar 

  • Sharma M, Murray PE, Sharma D (2013) Modern approaches to use bioactive materials and molecules in medical and dental treatments. Int J Curr Microbiol App Sci 2(11):429–439

    Google Scholar 

  • Shi C, Zhu Y, Ran X et al (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192

    CrossRef  Google Scholar 

  • Shi X, Chang H, Chen S et al (2012) Regulating cellular behavior on few-layer reduced graphene oxide films with well-controlled reduction states. Adv Funct Mater 22(4):751–759

    CrossRef  Google Scholar 

  • Shin SR, Li YC, Jang HL et al (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105(Pt B):255–274

    Google Scholar 

  • Shores EC, Holmes RE (1993) Porous hydroxyapatite. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 181–198

    CrossRef  Google Scholar 

  • Siebers M, Ter Brugge P, Walboomers X et al (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146

    CrossRef  Google Scholar 

  • Steichen SD, Caldorera-Moore M, Peppas NA (2013) A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci 48(3):416–427

    CrossRef  Google Scholar 

  • Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    CrossRef  Google Scholar 

  • Stevens MM, Qanadilo HF, Langer R et al (2004) A rapid-curing alginate gel system: utility in periosteum-derived cartilage tissue engineering. Biomaterials 25(5):887–894

    CrossRef  Google Scholar 

  • Stojanović IŽ, Najman S, Jovanović O et al (2014) Effects of depsidones from Hypogymnia physodes on HeLa cells viability and growth. Folia Biol (Praha) 60(2):89–94

    Google Scholar 

  • Stojanović-Radić Z, Čomić L, Radulović N et al (2012a) Antistaphylococcal activity of Inula helenium L. root essential oil: eudesmane sesquiterpene lactones induce cell membrane damage. Eur J Clin Microbiol Infect Dis 31(6):1015–1025

    CrossRef  Google Scholar 

  • Stojanović-Radić Z, Čomić L, Radulović N et al (2012b) Commercial Carlinae radix herbal drug: Botanical identity, chemical composition and antimicrobial properties. Pharmaceutical biology 50(8):933–940

    CrossRef  Google Scholar 

  • Takić-Miladinov D, Tomić S, Stojanović S et al (2016) Synthesis, swelling properties and evaluation of genotoxicity of hydrogels based on (Meth)acrylates and Itaconic Acid. Mat Res 19(5):1070–1079

    CrossRef  Google Scholar 

  • Thein-Han W, Liu J, Xu HH (2012) Calciumphosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair. Dent Mater 28(10):1059–1070

    CrossRef  Google Scholar 

  • Tirapelli C, Panzeri H, Soares RG et al (2010) A novel bioactive glass-ceramic for treating dentin hypersensitivity. Braz Oral Res 24(4):381–387

    CrossRef  Google Scholar 

  • Tomić S, Đokić J, Vasilijić S et al (2014) Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro. PLoS ONE 9(5):e96584. doi:10.1371/journal.pone.0096584

    CrossRef  Google Scholar 

  • Tonnesen HH, Karlsen J (2002) Alginate in drug delivery systems. Drug Dev Ind Pharm 28(6):621–630

    CrossRef  Google Scholar 

  • Trojani C, Boukhechba F, Scimeca JC et al (2006) Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 27(17):3256–3264

    CrossRef  Google Scholar 

  • Tsigkou O, Hench LL, Boccaccini AR et al (2007) Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass® composite films in the absence of osteogenic supplements. J Biomed Mater Res A 80(4):837–852

    CrossRef  Google Scholar 

  • Vallet-Regi M, Ruiz-Hernandez E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23(44):5177–5218

    CrossRef  Google Scholar 

  • van de Watering FC, Molkenboer-Kuenen JD, Boerman OC et al (2012) Differential loading methods for BMP-2 within injectable calcium phosphate cement. J Control Release 164(3):283–290

    CrossRef  Google Scholar 

  • Venkatesan J, Pallela R, Kim S-K (2014) Applications of carbon nanomaterials in bone tissue engineering. J Biomed Nanotechnol 10(10):3105–3123

    CrossRef  Google Scholar 

  • Verron E, Khairoun I, Guicheux J et al (2010) Calcium phosphate biomaterials as bone drug delivery systems: a review. Drug Discov Today 15(13–14):547–552

    CrossRef  Google Scholar 

  • Vogel M, Voigt C, Gross U et al (2001) In vivo comparison of bioactive glass particles in rabbits. Biomaterials 22(4):357–362

    CrossRef  Google Scholar 

  • Vrouwenvelder CA, Groot CG, de Groot KJ (1993) Histological and biochemical evaluation of osteoblasts cultured on bioactive glass, hydroxylapatite, titanium alloy, and stainless steel. J Biomed Mater Res 27(4):465–475

    CrossRef  Google Scholar 

  • Wang H-L, Carroll WJ (2001) Guided bone regeneration using bone grafts and collagen membranes. Quintessence Int 32(7):504–515

    Google Scholar 

  • Wang XP, Li X, Ito A et al (2011) Synthesis and characterization of hierarchically macroporous and mesoporous CaO–MO–SiO(2)–P(2)O(5) (M = Mg, Zn, Sr) bioactive glass scaffolds. Acta Biomater 7(10):3638–3644

    CrossRef  Google Scholar 

  • Wei G, Jin Q, Giannobile WV et al (2007) The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials 28(12):2087–2096

    CrossRef  Google Scholar 

  • Wheeler DL, Stokes KE (1997) In vivo evaluation of sol–gel bioglasst: part I: histological findings. In: Transactions of the 23rd annual meeting of the society for biomaterials, New Orleans, LA

    Google Scholar 

  • Wheeler DL, Stokes KE, Hoellrich RG et al (1998) Effect of bioactive glass particle size on osseous regeneration of cancellous defects. J Biomed Mater Res 41(4):527–533

    CrossRef  Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH et al (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64(5):1020–1037

    CrossRef  Google Scholar 

  • Wilson J, Yli-Urpo A, Risto-Pekka H (1993) Bioactive glasses: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 63–74

    CrossRef  Google Scholar 

  • Winslow BD, Shao H, Stewart RJ et al (2010) Biocompatibility of adhesive complex coacervates modeled after the Sandcastle glue of P. californica for craniofacial reconstruction. Biomaterials 31(36):9373–9381

    CrossRef  Google Scholar 

  • Wu CC, Wang CC, Lu DH et al (2012) Calcium phosphate cement delivering zoledronate decreases bone turnover rate and restores bone architecture in ovariectomized rats. Biomed Mater 7(3):035009

    CrossRef  Google Scholar 

  • Xu HH, Takagi S, Quinn JB et al (2004) Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A 68(4):725–734

    CrossRef  Google Scholar 

  • Xynos ID, Edgar AJ, Buttery LDK et al (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of BioglassW 45S5 dissolution. J Biomed Mater Res 55(2):151–157

    CrossRef  Google Scholar 

  • Yamamuro T (1993) A/W glass-ceramic: clinical applications. In: Hench LL, Wilson J (eds) An introduction to bioceramics. World Scientific, Singapore, pp 89–104

    CrossRef  Google Scholar 

  • Yu X, Wang L, Jiang X et al (2012) Biomimetic CaP coating incorporated with parathyroid hormone improves the osseointegration of titanium implant. J Mater Sci Mater Med 23(9):2177–2186

    CrossRef  Google Scholar 

  • Yuan H, Fernandes H, Habibovic P et al (2010) Osteoinductive ceramics as a synthetic alternative to autologous bone grafting. Proc Natl Acad Sci USA 107(31):13614–13619

    CrossRef  Google Scholar 

  • Zheng K, Yang SB, Wang JJ et al (2012) Characteristics and biocompatibility of Na(2)O–K(2)O–CaO–MgO–SrO–B(2)O(3)–P(2)O(5) borophosphate glass fibers. J Non-Cryst Solids 358(2):387–391

    CrossRef  Google Scholar 

  • Zimmermann WH, Melnychenko I, Eschenhagen T (2004) Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25(9):1639–1647

    CrossRef  Google Scholar 

  • Živković J, Najman S, Vukelić M et al (2015) Osteogenic effect of inflammatory macrophages loaded onto mineral bone substitute in subcutaneous implants. Arch Biol Sci 67(1):173–186

    CrossRef  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia [grant number III 41017].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stevo Najman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Najdanović, J., Rajković, J., Najman, S. (2018). Bioactive Biomaterials: Potential for Application in Bone Regenerative Medicine. In: Zivic, F., Affatato, S., Trajanovic, M., Schnabelrauch, M., Grujovic, N., Choy, K. (eds) Biomaterials in Clinical Practice . Springer, Cham. https://doi.org/10.1007/978-3-319-68025-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68025-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68024-8

  • Online ISBN: 978-3-319-68025-5

  • eBook Packages: EngineeringEngineering (R0)