Advertisement

A Model-Driven Process Enactment Approach for Network Service Design

  • Sadaf Mustafiz
  • Navid Nazarzadeoghaz
  • Guillaume Dupont
  • Ferhat KhendekEmail author
  • Maria Toeroe
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10567)

Abstract

The development of the Network Functions Virtualisation (NFV) paradigm has made way for the rapid deployment and management of network services. The European Telecommunications Standards Institute (ETSI) has been actively defining the NFV framework, which includes functional blocks and artifacts at different levels of abstraction. As part of the artifacts, various deployment templates have been defined to drive the deployment and the management of network services (NS) and Virtual Networks Functions (VNFs). The design of an NS is a complex activity that aims at selecting appropriate VNFs, creating the VNF forwarding graph (VNFFG), and all the necessary templates for the NS deployment and management, on the basis of the tenant’s requirements and existing VNFs. Automating the NS design activity as well as the NS management process itself is highly desirable and beneficial for NFV systems. Continuous deployment for NFV with model-driven orchestration means has been recently advocated.

In this paper, we propose a model-driven process for the design of network services which covers the automatic generation of the NS deployment template and the associated templates. The core of the process involves the decomposition of the NS requirements with the help of an ontology, and the selection of proper network functions based on a catalogue of existing VNFs. Moreover, we provide support for automated process execution with a model-driven process enactment approach. The process is modelled as a UML activity diagram. All the artifacts are models of defined metamodels. Enactment of the NS design process is carried out by mapping the process model to a model transformation chain, and executing the chain.

Notes

Acknowledgment

This work is partly funded by NSERC and Ericsson, and carried out within NSERC/Ericsson Industrial Research Chair in Model Based Software Management.

References

  1. 1.
    Abbasipour, M., Sackmann, M., Khendek, F., Toeroe, M.: A model-based approach for user requirements decomposition and component selection. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Formalisms for Reuse and Systems Integration. AISC, vol. 346, pp. 173–202. Springer, Cham (2015). doi: 10.1007/978-3-319-16577-6_8 Google Scholar
  2. 2.
    Allilaire, F., Bézivin, J., Brunelière, H., Jouault, F.: Global Model Management in Eclipse GMT/AM3. In: Eclipse Technology eXchange Workshop (eTX) - A ECOOP 2006 Satellite Event. Nantes, France, July 2006Google Scholar
  3. 3.
    Artač, M., Borovšak, T., Di Nitto, E., Guerriero, M., Tamburri, D.A.: Model-driven continuous deployment for quality DevOps. In: Proceedings of the 2nd International Workshop on Quality-Aware DevOps. QUDOS 2016, pp. 40–41. ACM (2016)Google Scholar
  4. 4.
    Bartsch, C., Shwartz, L., Ward, C., Grabarnik, G., Buco, M.J.: Decomposition of IT service processes and alternative service identification using ontologies. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium, pp. 714–717, April 2008Google Scholar
  5. 5.
    Basciani, F., Ruscio, D., Iovino, L., Pierantonio, A.: Automated chaining of model transformations with incompatible metamodels. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 602–618. Springer, Cham (2014). doi: 10.1007/978-3-319-11653-2_37 Google Scholar
  6. 6.
    Berezin, A.: Utilizing Declarative Model-Driven TOSCA Orchestration for NFV. DZone, March 2017. https://dzone.com/articles/utilizing-declarative-model-driven-tosca-orchestration-for-nfv
  7. 7.
    Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and modeling in the small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA 2003-2004. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005). doi: 10.1007/11538097_3 CrossRefGoogle Scholar
  8. 8.
    Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 1st edn. Morgan & Claypool Publishers, San Rafael (2012)Google Scholar
  9. 9.
    Brunelière, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)CrossRefGoogle Scholar
  10. 10.
    Chen, Y., Qin, Y., Lambe, M., Chu, W.: Realizing network function virtualization management and orchestration with model-based open architecture. In: 11th International Conference on Network and Service Management (CNSM 2015), pp. 410–418. IEEE (2015)Google Scholar
  11. 11.
    Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bugenhagen, M., Khan, W., Fargano, M., Cui, C., Deng, H., et al.: Network functions virtualisation: an introduction, benefits, enablers, challenges and call for action. In: SDN and OpenFlow World Congress, pp. 22–24 (2012)Google Scholar
  12. 12.
    Chung, L., Ma, W., Cooper, K.: Requirements elicitation through model-driven evaluation of software components. In: Fifth International Conference on Commercial-off-the-Shelf (COTS)-Based Software Systems, pp. 1–10. IEEE (2006)Google Scholar
  13. 13.
    Czarnecki, K., Helsen, S., Eisenecker, U.W.: Staged configuration through specialization and multilevel configuration of feature models. Software Process Improv. Pract. 10(2), 143–169 (2005)CrossRefGoogle Scholar
  14. 14.
    Papyrus, 16 June 2017. https://eclipse.org/papyrus/
  15. 15.
    Etien, A., Aranega, V., Blanc, X., Paige, R.F.: Chaining model transformations. In: Proceedings of the 1st Workshop on the Analysis of Model Transformations. AMT 2012, pp. 9–14. ACM (2012)Google Scholar
  16. 16.
    ETSI: Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV: ETSI GS NFV 003 V1.2.1, December 2014Google Scholar
  17. 17.
    ETSI: Network Functions Virtualisation; Management and Orchestration; Network Service Templates Specification: ETSI GS NFV-IFA 014 V2.1.1, October 2016Google Scholar
  18. 18.
    ETSI: Network Functions Virtualisation; Management and Orchestration; Report on Architectural Options: ETSI GS NFV-IFA 009 V1.1.1, July 2016Google Scholar
  19. 19.
    ETSI: Network Functions Virtualisation; Management and Orchestration; VNF Packaging Specification: ETSI GS NFV-IFA 011 V2.1.1, October 2016Google Scholar
  20. 20.
    ETSI: Network Functions Virtualisation (NFV) Release 2; Information Modeling; Papyrus Guidelines: ETSI GR NFV-IFA 016 V2.1.1, March 2017Google Scholar
  21. 21.
    ETSI: Network Functions Virtualisation (NFV) Release 2; Management and Orchestration; Report on NFV Information Model: ETSI GR NFV-IFA 015 V2.1.1, January 2017Google Scholar
  22. 22.
    Ferry, N., Song, H., Rossini, A., Chauvel, F., Solberg, A.: CloudMF: applying MDE to tame the complexity of managing multi-cloud applications. In: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, pp. 269–277, December 2014Google Scholar
  23. 23.
    Fritzsche, M., Gilani, W.: Model transformation chains and model management for end-to-end performance decision support. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2009. LNCS, vol. 6491, pp. 345–363. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-18023-1_9 CrossRefGoogle Scholar
  24. 24.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report CMU/SEI-90-TR-021, SEI, arnegie Mellon University, November 1990Google Scholar
  25. 25.
    Lin, J., Fox, M.S., Bilgic, T.: A requirement ontology for engineering design. Concurrent Eng. 4(3), 279–291 (1996)CrossRefGoogle Scholar
  26. 26.
    Lúcio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.: FTG+PM: an integrated framework for investigating model transformation chains. In: Khendek, F., Toeroe, M., Gherbi, A., Reed, R. (eds.) SDL 2013. LNCS, vol. 7916, pp. 182–202. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38911-5_11 CrossRefGoogle Scholar
  27. 27.
    Mijumbi, R., Serrat, J., Gorricho, J.L., Latre, S., Charalambides, M., Lopez, D.: Management and orchestration challenges in network functions virtualization. IEEE Commun. Mag. 54(1), 98–105 (2016)CrossRefGoogle Scholar
  28. 28.
    Mustafiz, S., Palma, F., Khendek, F., Toeroe, M.: A network service design and deployment process for NFV systems. In: IEEE NCA16: The 15th IEEE International Symposium on Network Computing and Applications, pp. 131–139. IEEE, October 2016Google Scholar
  29. 29.
    OASIS: TOSCA Simple Profile for Network Functions Virtualization (NFV) Version 1.0, March 2016. http://docs.oasis-open.org/tosca/tosca-nfv/v1.0/tosca-nfv-v1.0.html
  30. 30.
    Oldevik, J.: Transformation composition modelling framework. In: Kutvonen, L., Alonistioti, N. (eds.) DAIS 2005. LNCS, vol. 3543, pp. 108–114. Springer, Heidelberg (2005). doi: 10.1007/11498094_10 CrossRefGoogle Scholar
  31. 31.
    Oracle: Oracle Communications Network Service Orchestration Solution Implementation Guide, Release 1.1. White Paper, July 2016. https://docs.oracle.com/cd/E71075_01/doc.11/e65331/toc.htm
  32. 32.
    Oster, Z.J., Santhanam, G.R., Basu, S.: Decomposing the service composition problem. In: 8th IEEE European Conference on Web Services, pp. 163–170, December 2010Google Scholar
  33. 33.
    Oster, Z.J., Santhanam, G.R., Basu, S.: Identifying optimal composite services by decomposing the service composition problem. In: IEEE International Conference on Web Services. ICWS 2011, pp. 267–274. IEEE Computer Society (2011)Google Scholar
  34. 34.
    Rivera, J.E., Ruiz-Gonzalez, D., Lopez-Romero, F., Bautista, J., Vallecillo, A.: Orchestrating ATL model transformations. In: Proceedings of MtATL 2009, pp. 34–46. Nantes, France, July 2009Google Scholar
  35. 35.
    Sahhaf, S., Tavernier, W., Colle, D., Pickavet, M.: Network service chaining with efficient network function mapping based on service decompositions. In: 1st IEEE Conference on Network Softwarization (NetSoft), pp. 1–5, April 2015Google Scholar
  36. 36.
    Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model transformations. In: Paige, R.F., Hartman, A., Rensink, A. (eds.) ECMDA-FA 2009. LNCS, vol. 5562, pp. 18–33. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02674-4_3 CrossRefGoogle Scholar
  37. 37.
    Vanhooff, B., Ayed, D., Baelen, S., Joosen, W., Berbers, Y.: UniTI: a unified transformation infrastructure. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-75209-7_3 CrossRefGoogle Scholar
  38. 38.
    Wagelaar, D.: Blackbox composition of model transformations using domain-specific modelling languages. In: 1st European Workshop on Composition of Model Transformations (CMT), pp. 15–19 (2006)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sadaf Mustafiz
    • 1
  • Navid Nazarzadeoghaz
    • 1
  • Guillaume Dupont
    • 1
  • Ferhat Khendek
    • 1
    Email author
  • Maria Toeroe
    • 2
  1. 1.ECEConcordia UniversityMontrealCanada
  2. 2.Ericsson Inc.MontrealCanada

Personalised recommendations