Climates of the Late Triassic: Perspectives, Proxies and Problems

  • Lawrence H. Tanner
Part of the Topics in Geobiology book series (TGBI, volume 46)


The majority of paleoclimate evidence, including climate-sensitive lithofacies, paleobotanical evidence and a lack of evidence of glaciation, indicates a climate that was significantly warmer during the Late Triassic than at present. Multiple proxies demonstrate higher atmospheric pCO2 during the Late Triassic as the driver for this warmth. Historically, the results of pCO2 estimates from measurements of stomatal indices and calculations from the isotopic composition of pedogenic carbonate have produced differing results. More recent estimates based on improved methodologies and sampling constraints yield more consistent results, indicating pCO2 levels well over 1000 ppm, potentially higher, with excursions to even higher levels. Sedimentary evidence, particularly paleosols, indicate a highly seasonal climate for broad areas of Pangaea, suggesting a strongly monsoonal climate controlled by the arrangement of land areas. Most of the seasonal precipitation was limited to coastal regions, while the interior was largely semi-arid to arid at low to mid-latitudes. Humid climates were limited to mid- and higher latitude. The middle Carnian experienced a brief interval of increased warmth and humidity, with high-resolution records indicating that the event occurred as multiple pulses. A trend of aridification from the late Carnian to the Norian is evident across much of Pangaea, generally explained as the result of either weakening monsoonal flow due to the northward shift of Pangaea, or the drifting of regions between latitudinally-controlled climate zones. Biotic events at the end-Triassic have been attributed to CO2-forced warming caused by outgassing of flood basalts, although initial SO2-aerosol forced cooling followed by warming is more likely.


Late Triassic Megamonsoon Aridification Pedogenic carbonate Stomatal indices Carnian Pluvial Event CAMP 



The initial manuscript version of this chapter was improved greatly by the insights and helpful suggestions of Evelyn Kustatscher and Spencer Lucas.


  1. Ahlberg A, Arndorff L, Guy-Ohlson D (2002) Onshore climate change during the Late Triassic marine inundation on the Central European Basin. Terra Nova 14:241–248CrossRefGoogle Scholar
  2. Arche A, López-Gómez JL (2014) The Carnian Pluvial Event in Western Europe: new data from Iberia and correlation with the Western Neotethys and Eastern North America–NW Africa regions. Earth-Sci Rev 128:196–231CrossRefGoogle Scholar
  3. Ashraf AR, Sun Y, Sun G, Uhl D, Mosbrugger V, Li J, Herrman M (2010) Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, Northwest China—a review and additional lithological data. Palaeobio Palaeoenv 90:187–201CrossRefGoogle Scholar
  4. Beerling DJ, McElwain JC, Osborne CP (1998) Stomatal responses of the “living fossil” Gingko biloba L. to changes in atmospheric CO2 concentrations. J Experiment Bot 49:1603–1607Google Scholar
  5. Berner RA (1994) GEOCARB II: a revised model of atmospheric CO2 levels over Phanerozoic time. Science 249:1382–1386CrossRefGoogle Scholar
  6. Berner RA (1998) The carbon cycle and CO2 over Phanerozoic time: The role of land plants. Philos Trans R Soc London, Ser B 353:75–82Google Scholar
  7. Berner RA (2004) The Phanerozoic Carbon Cycle: CO2 and O2. Oxford University Press, OxfordGoogle Scholar
  8. Berner RA, Kothavala Z (2001) GEOCARB III: a revised model of atmospheric CO2 over Phanerozoic time. Am J Sci 301:182–204CrossRefGoogle Scholar
  9. Berra F, Jadoul F, Anelli A (2010) Environmental control on the end of the Dolomia Principale/Hauptdolomit depositional system in the central Alps: Coupling sea-level and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol 290:138–150CrossRefGoogle Scholar
  10. Birkeland PW (1984) Soils and geomorphology. New York, OxfordGoogle Scholar
  11. Blackburn TJ, Olsen PE, Bowring SA et al (2013) Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340:941–945CrossRefGoogle Scholar
  12. Blakey RC, Gubitosa R (1984) Controls of sandstone body geometry and architecture in the Chinle Formarion (Upper Triassic), Colorado Plateau. Sed Geol 38:51–86CrossRefGoogle Scholar
  13. Bonis NR, van Konijnenburg-van Cliffert JHA, Kürschner WM (2010) Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris. Palaeogeogr Palaeoclimatol Palaeoecol 295:146–161CrossRefGoogle Scholar
  14. Boucot AJ, Gray J (2001) A critique of Phanerozoic climatic models involving changes in the CO2 content of the atmosphere. Ear Sci Rev 56:1–159CrossRefGoogle Scholar
  15. Breda A, Preto N, Roghi G, Furin S, Meneguolo R, Ragazzi E, Fedele P, Gianolla P (2009) The Carnian Pluvial Event in the Tofane area (Cortina d'Ampezzo, Dolomites, Italy). Geo Alp 6:80–115Google Scholar
  16. Buol SW, Hole FD, McCracken RJ, Southard RJ (1997) Soil genesis and classification. Iowa State University, AmesGoogle Scholar
  17. Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400CrossRefGoogle Scholar
  18. Chen L-Q, Cheng-Sen L, Chaloner WG, Beerling DJ, Sun Q-G, Collinson ME, Mitchell PL (2001) Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am J Bot 88:1309–1315CrossRefGoogle Scholar
  19. Clemmensen LB, Kent DV, Jenkins FA Jr (1998) A Late Triassic lake system in East Greenland: facies, depositional cycles and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 140:135–159Google Scholar
  20. Cleveland DM, Nordt LC, Atchley SC (2008a) Paleosols, trace fossils, and precipitation estimates of the uppermost Triassic strata in northern New Mexico. Palaeogeogr Palaeoclimatol Palaeoecol 257:421–444CrossRefGoogle Scholar
  21. Cleveland DM, Nordt LC, Dworkin SI, Atchley SC (2008b) Pedogenic carbonate isotopes as evidence for extreme climatic events preceding the Triassic-Jurassic boundary: Implications for the biotic crisis? Geol Soc Am Bull 120:1408–1415CrossRefGoogle Scholar
  22. Coffey BP, Textoris DA (1996) Paleosols and paleoclimatic evolution, Durham sub-basin, North Carolina. In: LeTourneau PM, Olsen PE (eds) Aspects of Triassic-Jurassic rift basin geoscience. State Geol Nat Hist Surv Connecticut Misc Rep 1Google Scholar
  23. Colombi CE, Parrish JT (2008) Late Triassic environmental evolution in southwestern Pangea; plant taphonomy of the Ischigualasto Formation. Palaios 23:778–795Google Scholar
  24. Crowley TJ, Hyde WT, Short DA (1989) Seasonal cycle variations on the supercontinent of Pangaea. Geol 17:457–460CrossRefGoogle Scholar
  25. Currie BS, Colombi CE, Tabor NA, Shipman TC, Montañez IP (2009) Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina. J S Am Earth Sci 27:74–87CrossRefGoogle Scholar
  26. Curtin TM, Parrish JT (1999) The Pangean megamonsoon in SW Pangea; preliminary results from Middle Triassic lacustrine rocks and Paleosols, NW Argentina. Geol Soc Am Abs Prog 31:417–418Google Scholar
  27. Dal Corso J, Mietto P, Newton RJ, Pancost RD, Preto N, Roghi G, Wignall P (2012) Discovery of a major 13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geol 40:79–82CrossRefGoogle Scholar
  28. Dal Corso J, Gianolla P, Newton RJ, Franceschi M, Roghi G, Caggiati M, Raucsik B, Budai T, Haas J, Preto N (2015) Carbon isotope records reveal synchronicity between carbon cycle perturbation and the “Carnian Pluvial Event” in the Tethys realm (Late Triassic). Glob Planet Change 127:79–90CrossRefGoogle Scholar
  29. Dawit EL (2016) Paleoclimatic records of Late Triassic paleosols from Central Ethiopia. Palaeogeogr Palaeoclimatol Palaeoecol 449:127–140CrossRefGoogle Scholar
  30. Driese SG, Mora CI (2003) Paleopedology and stable-isotope geochemistry of Late Triassic (Carnian-Norian) paleosols, Durham sub-basin, North Carolina, U.S.A.; implications for paleoclimate and paleoatmospheric pCO2. In: Renault RW, Ashley GM (eds) Sedimentation in continental rifts. SEPM Spec Publ 73:207–218Google Scholar
  31. Dubiel RF, Parrish JT, Parrish JM, Good SC (1991) The Pangaean megamonsoon—evidence from the Upper Triassic Chinle Formation, Colorado Plateau. Palaios 6:347–370Google Scholar
  32. Ekart DD, Cerling TE, Montañez IP, Tabor NJ (1999) A 400 million year carbon isotope record of pedogenic carbonate: implications for paleoatmospheric carbon dioxide. Am J Sci 299:805–827CrossRefGoogle Scholar
  33. Fawcett PJ, Barron EJ, Robinson VD, Katz BJ (1994) The climatic evolution of India and Australia from the Late Permian to Mid-Jurassic: a comparison of climate model results with the geologic record. In: Klein GD (ed) Pangea: paleoclimate, tectonics and sedimentation during accretion, zenith and break-up of a supercontinent. Geol Soc Am Spec Pap 288:139–157Google Scholar
  34. Fletcher BJ, Brentnall SJ, Anderson CW, Berner RA, Beerling DJ (2008) Atmospheric carbon dioxide linked with Mesozoic and early Cenozoic climate change. Nat Geosci 1:43–48. CrossRefGoogle Scholar
  35. Flügel E (2002) Triassic reef patterns. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic reef patterns. SEPM Spec Pub 72: 91–463Google Scholar
  36. Frakes LA, Francis JE, Syktus JI (1992) Climate modes of the Phanerozoic: the history of the Earth’s climate over the past 600 million years. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  37. Furin S, Preto N, Rigo M, Roghi G, Gianolla P, Crowley JL, Bowring SA (2006) High-precision U–Pb zircon age from the Triassic of Italy: implications for the Triassic time scale and the Carnian origin of nannoplankton and dinosaurs. Geology 34:1009–1012CrossRefGoogle Scholar
  38. Goddéris Y, Donnadieu Y, de Vargas C, Pierrehumbert RT, Dromart G, van de Schootbrugge B (2008) Causal or casual link between the rise of nanoplankton calcification and a tectonically-driven massive decrease in Late Triassic atmospheric CO2? Earth Planet Sci Lett 267:247–255CrossRefGoogle Scholar
  39. Golonka J (2007) Phanerozoic paleoenvironment and paleolithofacies maps: Mesozoic. Geologia 33:211–264Google Scholar
  40. Götz AE, Ruckwied H, Pálfy J, Haas J (2009) Palynological evidence of synchronous changes within the terrestrial and marine realm at the Triassic/Jurassic boundary (Csȍvár section, Hungary). Rev Palaeobot Palynol 126:401–409CrossRefGoogle Scholar
  41. Guex J, Schoene B, Bartolini A, Spangenberg JE, Schaltegger U, O’Dougherty L, Taylor D, Bucher H, Atudorei V (2012) Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 346-347:1–11CrossRefGoogle Scholar
  42. Hallam A (1985) A review of Mesozoic climates. J Geol Soc Lond 142:433–445CrossRefGoogle Scholar
  43. Hallam A (1990) The end-Triassic mass extinction event. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism, and mass mortality. Geol Soc Am Spec Pap 247:577–583Google Scholar
  44. Hasiotis ST, Dubiel RF, Demko TM (1998) A holistic approach to reconstructing Triassic paleoecosystems: using ichnofossil and paleosols as a basic framework. Nat Park Serv Paleontol Res Tech Rep NPS/NRGRDTR-98/01Google Scholar
  45. Hautmann M (2004) Effect of end-Triassic CO2 maximum on carbonate sedimentation and marine mass-extinction. Facies 50:257–261CrossRefGoogle Scholar
  46. Hautmann M, Benton MJ, Tomasových A (2008) Catastrophic ocean acidification at the Triassic-Jurassic boundary. N Jb Geol Paläont Abh 249:119–127CrossRefGoogle Scholar
  47. Haworth M, Hesselbo SP, McElwain JC, Robinson SA, Brunt JW (2005) Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae). Geol 33:749–752CrossRefGoogle Scholar
  48. Hay WH, Behensky JF, Barron EJ (1982) Late Triassic–Jurassic paleoclimatolgy of the proto-Central North Atlantic rift system. Palaeogeogr Palaeoclimatol Palaeoecol 40:13–30CrossRefGoogle Scholar
  49. Hays PD, Grossman EL (1991) Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate. Geol 19:441–444CrossRefGoogle Scholar
  50. Hesselbo SP, Robinson SA, Surlyk F, Piasecki S (2002) Terrestrial and marine extinction at the Triassic-Jurassic boundary synchronized with major carbon-cycle perturbation: a link to initiation of massive volcanism? Geol 30:251–254CrossRefGoogle Scholar
  51. Hesselbo SP, Robinson SA, Surlyk F (2004) Sea-level change and facies development across potential Triassic–Jurassic boundary hosizons, SW Britain. J Geol Soc Lond 161:365–379CrossRefGoogle Scholar
  52. Hesselbo SP, McRoberts CA, Pàlfy J (2007) Triassic–Jurassic boundary events: problems, progress, possibilities. Palaeogeogr Palaeoclimatol Palaeoecol 244:1–10CrossRefGoogle Scholar
  53. Hochuli PA, Vigran JO (2010) Climate variations in the Boreal Triassic—inferred from palynological records from the Barents Sea. Palaeogeogr Palaeoclimatol Palaeoecol 290:20–42CrossRefGoogle Scholar
  54. Hofmann A, Tourani A, Gaupp R (2000) Cyclicity of Triassic to Lower Jurassic continental red beds of the Argana Valley, Morocco: implications for palaeoclimate and basin evolution. Palaeogeogr Palaeoclimatol Palaeoecol 161:229–266CrossRefGoogle Scholar
  55. Hornung T, Brandner R (2005) Biochronostratigraphy of the Rheingraben Turnover (Hallstatt Facies Belt): local black shale events controlled by regional tectonics, climatic change and plate tectonics. Facies 51:460–479CrossRefGoogle Scholar
  56. Hornung T, Brandner R, Krystyn L, Joachimsky MM, Keim L (2007a) Multistratigraphic constrains on the NW Tethyan “Carnian Crisis”. New Mex Mus Nat Hist Sci Bull 41:59–67Google Scholar
  57. Hornung T, Krystyn L, Brandner R (2007b) A Tethys-wide mid-Carnian (Upper Triassic) carbonate productivity crisis: evidence for the Alpine Rheingraben Event from Spiti (Indian Himalaya)? J Asian Earth Sci 30:285–302CrossRefGoogle Scholar
  58. Hubbard RNL, Boulter MC (1997) Mid Mesozoic floras and faunas. Palaeontology 40:43–70Google Scholar
  59. Hubbard RNL, Boulter MC (2000) Phytogeography and paleoecology in Western Europe and Eastern Greenland near the Triassic-Jurassic boundary. PALAIOS 15:120–131CrossRefGoogle Scholar
  60. Kent DV, Olsen PE (2000) Magnetic polarity stratigraphy and paleolatitude of the Triassic-Jurassic Blomidon Formation in the Fundy basin (Canada): implications for early Mesozoic tropical climate gradients. Earth Planet Sci Lett 179:311–324CrossRefGoogle Scholar
  61. Kent DV, Olsen PE, Muttoni G (2017) Astrochronostratigraphic polarity time scale (APTS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages. Earth-Sci Rev 166:153–180CrossRefGoogle Scholar
  62. Kidder DL, Worsley TR (2004) Causes and consequences of extreme Permo–Triassic warming to globally equable climate and relation to Permo–Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol 203:207–237CrossRefGoogle Scholar
  63. Kiessling W (2010) Reef expansion during the Triassic: Spread of photosymbiosis balancing climatic cooling. Palaeogeogr Palaeoclimatol Palaeoecol 290:11–19CrossRefGoogle Scholar
  64. Kiessling W, Aberhan M, Brenneis B, Wagner PJ (2007) Extinction trajectories of benthic organisms across the Triassic-Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 244:201–222CrossRefGoogle Scholar
  65. Kohút M, Hofmann M, Havrila M, Linnemann U, Havrila J (2017) Tracking an upper limit of the “Carnian Crisis” and/or Carnian stage in the Western Carpathians (Slovakia). Int J Earth Sci (Geol Rundsch).
  66. Korte C, Kozur HW, Veizer J (2005) *13C and *18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeo-temperature. Palaeogeogr Palaeoclimatol Palaeoecol 226:287–306Google Scholar
  67. Kozur H, Bachmann GH (2010) Correlation of the predominantly continental Upper Triassic of the Germanic Basin with the Tethyan scale. In: Di Stefano P, Balini M (eds) New developments on Triassic integrated stratigraphy, workshop Palermo, September 12–16, 2010, 25–27Google Scholar
  68. Kuerschner WM, Bonis NR, Krystyn L (2007) Carbon-isotope stratigraphy and palynostratigraphy of the Triassic-Jurassic transition in the Tiefengraben section—Northern Calcareous Alps (Austria). Palaeogeogr Palaeoclimatol Palaeoecol 244:257–280CrossRefGoogle Scholar
  69. Kutzbach JE (1994) Idealized Pangean climates: Sensitivity to orbital change. In: Klein GD (ed) Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. Geol Soc Am Spec Pap 288:41–55Google Scholar
  70. Kutzbach JE, Gallimore RG (1989) Pangaean climates: megamonsoons of the Megacontinent. J Geophys Res 94:3341–3357CrossRefGoogle Scholar
  71. Laskar J, Robutel P, Joutel F, Gastineau M, Correia ACM, Levrard B (2004) A long term numerical solution for the insolation quantities of the Earth. Astron Astrophys 428:261–285CrossRefGoogle Scholar
  72. LeTourneau PM (2000) From coal to caliche: the sedimentary record of Late Triassic paleoclimate from the Taylorsville rift basin, Virginia. Geol Soc Am Abstr Prog 32(1): 1–30Google Scholar
  73. Li L, Wang Y, Liu Z, Zhou N, Wang Y (2016) Late Triassic palaeoclimate and palaeoecosystem variations inferred by palynological record in the northeastern Sichuan Basin. China Paläontol Zeitschr.
  74. Lucas SG (1999) The epicontinental Triassic, an overview. Zentralbl Geolog Paläontol Teil 1(1998):475–496Google Scholar
  75. Lucas SG (2010) The Triassic timescale based on nonmarine tetrapod biostratigraphy and biochronology. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Pub 334:447–500CrossRefGoogle Scholar
  76. Lucas SG, Tanner LH (2008) Reexamination of the end-Triassic mass extinction. In: Elewa AMT (ed) Mass extinction. Springer, pp 66–103Google Scholar
  77. Lucas SG, Tanner LH (2017) Timing and mechanisms of extinctions during the Late Triassic. In: Tanner LH (ed) The Late Triassic world: Earth in a time of transition. Topics in geobiology, Springer (this volume)Google Scholar
  78. Lucas SG, Tanner LH, Kozur HW, Weems RE, Heckert AB (2012) The Late Triassic Timescale: Age and correlation of the Carnian–Norian boundary. Earth-Sci Rev 114:1–18CrossRefGoogle Scholar
  79. Marzoli A, Bertrand H, Knight KB, Cirilli S, Buratti N, Vérati C, Nomade S, Renne PR, Youbi N, Martini R, Allenbach J, Neuwerth R, Rapaille C, Zaninetti L, Bellieni G (2004) Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis. Geology 32:973–976CrossRefGoogle Scholar
  80. Marzoli A, Callagaro S, Dal Corso J, Youbi N, Bertrand H, Reisberg L, Chiaradia M, Merle R, Jourdan F (2017) The Central Atlantic magmatic province: a review. In: Tanner LF (ed) The Late Triassic world: Earth in a time of transition. Topics in geobiology, Springer (this volume)Google Scholar
  81. McElwain JC, Punyasena SW (2007) Mass extinction events and the plant fossil record. Trends Ecol Evol 22:548–557Google Scholar
  82. McElwain JC, Beerling DJ, Woodward FI (1999) Fossil plants and global warming at the Triassic-Jurassic boundary. Science 285:1386–1390CrossRefGoogle Scholar
  83. McElwain JC, Popa ME, Hesselbo SP, Haworth M, Surlyk F (2007) Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiol 33:547–573CrossRefGoogle Scholar
  84. McElwain JC, Wagner PJ, Hesselbo SP (2009) Fossil plant relative abundances indicate sudden loss of late Triassic biodiversity in East Greenland. Science 324:1554–1556CrossRefGoogle Scholar
  85. McRoberts CA, Krystyn L, Hautmann M (2012) Macrofaunal response to the end-Triassic mass extinction in the west-Tethyan Kossen Basin, Austria. Palaios 27:607–616Google Scholar
  86. Miller CS, Peterse F, da Silva A-C, Branyi V, Reichart, GJ, Kürschner WM (2017) Astronomical age constraints and extinction mechanisms of the Late Triassic Carnian crisis. Sci Rep 7: 2557 | doi: 10.1038/s41598-017-02817-7Google Scholar
  87. Mueller S, Hounslow MW, Kürschner WM (2015) Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). J Geol Soc 173:186–202CrossRefGoogle Scholar
  88. Mutti M, Weissert H (1995) Triassic monsoonal climate and its signature in Ladinian–Carnian carbonate platforms (Southern Alps, Italy). J Sed Res 65:357–367Google Scholar
  89. Muttoni G, Kent DV, Jadoul F, Olsen PE, Rigo M, Galli MT, Nicora A (2010) Rhaetian magneto-stratigraphy from the Southern Alps (Italy): constraints on Triassic chronology. Palaeogeogr Palaeoclimatol Palaeoecol 285:1–16CrossRefGoogle Scholar
  90. Nakada R, Ogawa K, Suzuki N, Takahashi S, Takahashi Y (2014) Late Triassic compositional changes of aeolian dusts in the pelagic Panthalassa: response to the continental climatic change. Palaeogeogr Palaeoclimatol Palaeoecol 393:61–75CrossRefGoogle Scholar
  91. Nomade S, Knight KB, Beutel E, Renne PR, Verati C, Feraud G, Marzoli A, Youbi N, Bertrand H (2007) Chronology of the Central Atlantic Magmatic Province: implications for the Central Atlantic rifting processes and the Triassic–Jurassic biotic crisis. Palaeogeogr Palaeoclimatol Palaeoecol 244:326–344CrossRefGoogle Scholar
  92. Nordt L, Atchley S, Dworkin S (2015) Collapse of the Late Triassic megamonsoon in western equatorial Pangea, present-day American Southwest. Geol Soc Am Bull 127:1798–1815CrossRefGoogle Scholar
  93. O’Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558CrossRefGoogle Scholar
  94. Olsen PE (1986) A 40-million year lake record of Early Mesozoic orbital climate forcing. Science 234:842–848CrossRefGoogle Scholar
  95. Olsen PE (1997) Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annu Rev Earth Planet Sci 25:337–401CrossRefGoogle Scholar
  96. Olsen PE. Ken, DV (2000) High resolution early Mesozoic Pangaean climatic transect in lacustrine environments. In: Bachman G, Lerche I (eds) Epicontinental Triassic, Volume 3. Zentralblatt für Geologie and Paläontologie, Teil I, Heft 11/12:1475–1496Google Scholar
  97. Olsen PE, Schlische RW, Gore PJW (1989) Tectonic, depositional and paleoecological history of early Mesozoic rift basins, eastern North America. Int Geol Cong Field Trip Guidebook T351. Am Geophys Union, Washington, DCGoogle Scholar
  98. Pálfy J, Kocsis TÁ (2014) Volcanism of the Central Atlantic Magmatic Province as the trigger of environmental and biotic changes around the Triassic-Jurassic boundary. In: Keller G, Kerr AC (eds) Volcanism, impacts and mass extinctions: causes and effects. Geol Soc Am Spec Pap 505:245–261Google Scholar
  99. Pálfy J, Zajzon N (2012) Environmental changes across the Triassic-Jurassic boundary and coeval volcanism inferred from elemental geochemistry and mineralogy in the Kendlbachgraben section (northern Calcareous Alps, Austria). Earth Planet Sci Lett 335-336:121–134CrossRefGoogle Scholar
  100. Pálfy J, Demeny A, Haas J, Htenyi M, Orchard MJ, Veto I (2001) Carbon isotope anomaly at the Triassic-Jurassic boundary from a marine section in Hungary. Geology 29:1047–1050CrossRefGoogle Scholar
  101. Parfitt EA, Wilson L (2000) Impact of basaltic eruptions on climate. Geol Soc Am Abs Prog 32(7):501Google Scholar
  102. Parrish JT (1993) Climate of the supercontinent Pangea. J Geol 101:215–233CrossRefGoogle Scholar
  103. Parrish JT, Peterson F (1988) Wind direction predicted from global circulation models, and wind direction directions determined from eolian sandstones of the Western United States—a comparison. Sed Geol 56:261–282CrossRefGoogle Scholar
  104. Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S et al (2011) Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytol 190:724–739CrossRefGoogle Scholar
  105. Pieńkowski G, Niedźwiedzki G, Waksmundzka M (2012) Sedimentological, palynological and geochemical studies of the terrestrial Triassic-Jurassic boundary in northwestern Poland. Geo Mag 149:308–332CrossRefGoogle Scholar
  106. Pieńkowski G, Niedźwiedzki G, Branski P (2014) Climatic reversals related to the Central Atlantic magmatic province caused the end-Triassic biotic crisis—evidence from continental strata in Poland. Geol Soc Am Spec Pap 505:263–286Google Scholar
  107. Preto N, Kustatscher E, Wignall PB (2010) Triassic climates—state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 290:1–10CrossRefGoogle Scholar
  108. Prochnow SJ, Nordt LC, Atchley SC, Hudec MR (2006) Multiproxy paleosol evidence for Middle and Late Triassic climate trends in eastern Utah. Palaeogeogr Palaeoclimatol Palaeoecol 232:53–72CrossRefGoogle Scholar
  109. Retallack GJ (1999) Post-apocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol Soc Am Bull 111:52–70CrossRefGoogle Scholar
  110. Retallack GJ (2001a) A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411:287–290CrossRefGoogle Scholar
  111. Retallack GJ (2001b) Soils of the past: an introduction to paleopedology. Blackwell, LondonCrossRefGoogle Scholar
  112. Retallack GJ (2013) Permian and Triassic greenhouse crises. Gondwana Res 24:90–103CrossRefGoogle Scholar
  113. Richoz S, van de Schootbrugge B, Pross J, Püttmann W, Quan TM, Lindström S, Heunisch C, Fiebig J, Maquil R, Schouten S, Hauzenberger CA, Wignall PB (2012) Hydrogen sulphide poisoning of shallow seas following the end-Triassic extinction. Nat Geosci 5:662–667CrossRefGoogle Scholar
  114. Rigo M, Preto N, Roghi G, Tateo F, Mietto P (2007) A rise in the carbonate compensation depth of western Tethys in the Carnian (Late Triassic): Deep-water evidence for the Carnian pluvial event. Palaeogeogr Palaeoclimatol Palaeoecol 246:188–205CrossRefGoogle Scholar
  115. Rigo M, Trotter JA, Preto N, Williams IS (2012) Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys. Geol 40:515–518CrossRefGoogle Scholar
  116. Robinson PL (1973) Palaeoclimatology and continental drift. In: Tarling DH, Runcorn SK (eds) Implications of continental drift to the Earth sciences, vol. 1. Academic Press, London, 449–476Google Scholar
  117. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  118. Roghi G (2004) Palynological investigations in the Carnian of Cave del Predil area (once Raibl, Julian Alps). Rev Paleobot Palynol 132:1–35CrossRefGoogle Scholar
  119. Roghi G, Gianolla P, Minarelli C, Pilati C, Preto N (2010) Palynological correlation of Carnian humid pulses throughout the western Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 290:89–106CrossRefGoogle Scholar
  120. Royer DL (2012) Leaf shape responds to temperature but not CO2 in Acer rubrum. PLoS One 7(11):e49559. CrossRefGoogle Scholar
  121. Royer DL, Berner RA, Beerling DJ (2001) Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches. Earth-Sci Rev 54:349–392CrossRefGoogle Scholar
  122. Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005) Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. Am J Bot 92:1141–1151CrossRefGoogle Scholar
  123. Royer DL, Berner RA, Park J (2007) Climate sensitivity constrained by CO2 concentrations over the past 420 million years. Nature 446:530–532CrossRefGoogle Scholar
  124. Ruffell A, Shelton R (1999) The control of sedimentary facies by climate during phases of crustal extension. Examples from the Triassic of onshore and offshore England and Northern Ireland. J Geol Soc Lond 156:779–789CrossRefGoogle Scholar
  125. Ruhl M, Kuerschner WM, Krystyn L (2009) Triassic-Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria). Earth Planet Sci Lett 281:169–187CrossRefGoogle Scholar
  126. Ruhl M, Bonis NR, Reichart G-J, Sinninghe D, Jaap S, Kuerschner WF (2011) Atmospheric carbon injection linked to end-Triassic mass extinction. Science 333:430–434CrossRefGoogle Scholar
  127. Schaller MF, Wright JD, Kent DV (2011) Atmospheric pCO2 perturbations associated with the Central Atlantic magmatic province. Science 331:1404–1409CrossRefGoogle Scholar
  128. Schaller MF, Wright JD, Kent DV, Olsen PE (2012) Rapid emplacement of the Central Atlantic Magmatic Province as net sink for CO2. Earth Planet Sci Lett 323-324:27–39CrossRefGoogle Scholar
  129. Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharov M (2008) Precise U-Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267:266–275CrossRefGoogle Scholar
  130. Schmidt A, Skeffington RA, Thordarson T, Self S, Forster PM et al (2016) Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat Geosci 9:77–82CrossRefGoogle Scholar
  131. Sciscio L, Bordy E (2016) Palaeoclimatic conditions in the Late Triassic-Early Jurassic of southern Africa: a geochemical assessment of the Elliot Formation. J African Earth Sci 119:102–119CrossRefGoogle Scholar
  132. Sellwood BW, Valdes PJ (2006) Mesozoic climates, general circulation models and the rock record. Sed Geol 190:269–287CrossRefGoogle Scholar
  133. Sepkoski JJ (2002) A compendium of fossil marine animal genera. Bull Am Paleonto 363:1–560Google Scholar
  134. Sha J, Olsen PE, Xu D, Yao X, Pan Y, Wang Y, Zhang X, Vajda V (2015) Early Mesozoic, high-latitude continental Triassic–Jurassic climate in high-latitude Asia was dominated by obliquity-paced variations (Junggar Basin, Urumqi, China). Proc Natl Acad Sci U S A 112:3624–3629Google Scholar
  135. Sigurdsson H (1990) Assessment of atmospheric impact of volcanic eruptions. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history. Geol Soc Am Spec Pap 247:99–110Google Scholar
  136. Simms MJ, Ruffell AH (1989) Synchroneity of climatic change and extinctions in the Late Triassic. Geology 17:265–268CrossRefGoogle Scholar
  137. Simms MJ, Ruffell AH (1990) Climatic and biotic change in the Late Triassic. J Geol Soc Lond 147:321–327CrossRefGoogle Scholar
  138. Stefani M, Furin S, Gianolla P (2010) The changing climate framework and depositional dynamics of the Triassic carbonate platforms from the Dolomites. Palaeogeogr Palaeoclimatol Palaeoecol 290:43–57CrossRefGoogle Scholar
  139. Steinthorsdottir M, Jeram AJ, McElwain JC (2011) Extremely elevated CO2 concentrations at the Triassic/Jurassic boundary. Palaeogeogr Palaeoclimatol Palaeoecol 308:418–432CrossRefGoogle Scholar
  140. Suchecki RK, Hubert JF, Birney de Wet CC (1988) Isotopic imprint of climate and hydrogeochemistry on terrestrial strata of the Triassic-Jurassic Hartford and Fundy rift basins. J Sed Res 58:801–811Google Scholar
  141. Sun YD, Wignall PB, Joachimski MM, Bond DPG, Grasby SE, Lai XL, Wang LN, Zhang ZT, Sun S (2016) Climate warming, euxinia and carbon isotope perturbations during the Carnian (Triassic) Crisis in South China. Earth Planet Sci Lett 444:88–100CrossRefGoogle Scholar
  142. Tabor NJ, Yapp CJ, Montañez IP (2004) Goethite, calcite and organic matter from Permian and Triassic soils; carbon isotopes and CO2 concentrations. Geochim Cosmochim Acta 68:1503–1517CrossRefGoogle Scholar
  143. Tabor NJ, Montañez IP, Kelso KA, Currie BS, Shipman TA, Colombi, CE (2006) Late Triassic soil catena: Landscape and climate controls on paleosol morphology and chemistry across the Carnian-age Ischigualasto-Villa Union basin, northwestern Argentina. In: Alonso-Zarza AM, Tanner LH (eds) Paleoenvironmental record and applications of calcretes and palustrine carbonates. Geol Soc Am Spec Pap 416:17–42Google Scholar
  144. Talbot MR, Holm K, Williams MAJ (1994) Sedimentation in low-gradient desert margin systems: a comparison of the Late Triassic of northwest Somerset (England) and the late Quaternary of east-central Australia. In: Rosen MR (ed) Paleoclimate and basin evolution of playa systems. Geol Soc Am Spec Pap 289:97–117Google Scholar
  145. Tanner LH (2000a) Palustrine-lacustrine and alluvial facies of the (Norian) Owl Rock Formation (Chinle Group), Four Corners Region, southwestern U.S.A.: implications for Late Triassic paleoclimate. Jour Sed Res 70:1280–1289CrossRefGoogle Scholar
  146. Tanner LH (2000b) Triassic-Jurassic lacustrine deposition in the Fundy rift basin, eastern Canada. In: Gierlowski-Kordesch E, Kelts K (eds) Lake basins through space and time. Am Assoc Petr Geol Stud Geol 46:159–166Google Scholar
  147. Tanner LH (2002a) Mesozoic atmospheric CO2 spike: Comment and Reply. Nature 415:388CrossRefGoogle Scholar
  148. Tanner LH (2002b) Pedogenic record of paleoclimate and basin evolution in the Triassic-Jurassic Fundy rift basin, eastern Canada. In: LeTourneau P, Olsen PE (eds) Aspects of Triassic-Jurassic rift basin geoscience. Columbia University Press, New YorkGoogle Scholar
  149. Tanner LH (2003) Pedogenic features of the Chinle Group, Four Corners region; Evidence of Late Triassic aridification. New Mex Geol Soc Guidebook 54th Field ConfGoogle Scholar
  150. Tanner LH (2010a) Terrestrial carbonates as indicators of palaeoclimate. In: Alonsa-Zarza AM, Tanner LH (eds) Carbonates in continental settings: geochemistry, diagenesis and applications. Elsevier, Devel Sedimentol 62:179–214Google Scholar
  151. Tanner LH (2010b) Cyclostratigraphic record of the Triassic: A critical examination. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334:119–137CrossRefGoogle Scholar
  152. Tanner LH Lucas SG (2006) Calcretes of the Upper Triassic Chinle Group, Four Corners region, southwestern U.S.A.: climatic implications. In: Alonso-Zarza AM, Tanner LH (eds) Paleoenvironmental record and applications of calcretes and palustrine Carbonates. Geol Soc Am Spec Pap 416:53–74Google Scholar
  153. Tanner LH, Lucas SG (2015) The Triassic-Jurassic strata of the Newark Basin, USA: A complete and accurate astronomically-tuned timescale? Stratigraphy 12:47–65Google Scholar
  154. Tanner LH, Hubert JF, Coffey BP, McInerney DP (2001) Stability of atmospheric CO2 levels across the Triassic/Jurassic boundary. Nature 411:675–677CrossRefGoogle Scholar
  155. Tanner LH, Lucas SG, Chapman MG (2004) Assessing the record and causes of Late Triassic extinctions. Earth-Sci Rev 65:103–139CrossRefGoogle Scholar
  156. Tanner LH, Smith DL, Allan A (2007) Stomatal response of swordfern to volcanogenic CO and SO from Kilauea volcano, Hawaii. Geophys Res Lett 34:L15807.
  157. Tanner LH, Kyte FT, Richoz S, Krystyn L (2016) Distribution of iridium and associated geochemistry across the Triassic-Jurassic boundary in sections at Kuhjoch and Kendlbach, Northern Calcareous Alps, Austria. Palaeogeogr Palaeoclimatol Palaecol 449:13–26,
  158. Taylor EL (1989) Tree-ring structure in woody axes from the central Transantarctic Mountains, Antarctica. Proc Internat Sympos Antarctic Res, Hangzhou, China, May, 1989, China Ocean Press, Tianjin, pp. 109–113Google Scholar
  159. Taylor EL, Taylor TN, Cuneo RN (2000) Permian and Triassic high latitude and paleoclimates; evidence from fossil biotas. In: Huber BT, MacLeod KG, Wing SL (eds) Warm climates in Earth history. Cambridge University Press, Cambridge, pp 321–350Google Scholar
  160. Therrien F, Fastovsky DE (2000) Paleoenvironments of early theropods, Chinle Formation (Late Triassic), Petrified Forest National Park, Arizona. Palaios 15:194–211Google Scholar
  161. Tian N, Wang Y, Philippe M, Li L, Xie X, Jiang Z (2016) New record of fossil wood Xenoxylon from the Late Triassic in the Sichuan Basin, southern China and its paleoclimatic implications. Palaeogeogr Palaeoclimatol Palaeoecol 464:65–75CrossRefGoogle Scholar
  162. Trotter JA, Williams IS, Nicora A, Mazza M, Rigo M (2015) Long-term cycles of Triassic climate change: a new δ18O record from conodont apatite. Earth Planet Sci Lett 415:165–174CrossRefGoogle Scholar
  163. Tucker ME, Benton MJ (1982) Triassic environments, climates, and reptile evolution. Palaeogeogr Palaeoclimatol Palaeoecol 40:361–379CrossRefGoogle Scholar
  164. Van de Schootbrugge B, Tremolada F, Rosenthal Y, Bailey TR, Feist-Burkhardt S, Brinkhuis H, Pross J, Kent DV, Falkowski PG (2007) End-Triassic calcification crisis and blooms of organic-walled 'disaster species. Palaeogeogr Palaeoclim Palaeoecol 244:126–141CrossRefGoogle Scholar
  165. Van de Schootbrugge B, Payne JL, Tomasovych A, Pross J, Fiebig J, Benbrahim M, Föllmi KB, Quan TM (2008) Carbon cycle perturbation and stabilization in the wake of the Triassic-Jurassic boundary mass-extinction event. Geochem Geophys Geosys 9.
  166. Van de Schootbrugge B, Quan T, Lindström S, Püttmann W, Heunisch C, Pross J, Fiebig J, Petschick R, Röhling H-G, Richoz S, Rosenthal Y, Falkowski PG (2009) Floral changes across the Triassic/Jurassic boundary linked to flood basalt volcanism. Nat Geosci 2:589–594CrossRefGoogle Scholar
  167. Van de Schootbrugge B, Bachan A, Suan G, Richoz S, Payne JL (2013) Microbes, mud and methane: cause and consequence of recurrent Early Jurassic anoxia following the end-Triassic mass-extinction. Palaeontology 56(4):685–709CrossRefGoogle Scholar
  168. Van Houten FB (1962) Cyclic sedimentation and the origin of analcime-rich Upper Triassic Lockatong Formation, west-central New Jersey and adjacent Pennsylvania. Am J Sci 260:561–576CrossRefGoogle Scholar
  169. Van Houten FB (1964) Cyclic lacustrine sedimentation, Upper Triassic Lockatong Formation, central New Jersey and adjacent Pennsylvania. Kansas Geol Surv Bull 169:497–532Google Scholar
  170. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godde’ris Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88CrossRefGoogle Scholar
  171. Visscher H, Van Houte M, Brugman WA, Poort RJ (1994) Rejection of a Carnian (Late Triassic) “pluvial event” in Europe. Rev Palaeobot Palynol 83:217–226CrossRefGoogle Scholar
  172. Weems RJ, Tanner LH, Lucas SG (2016) Synthesis and revision of the lithostratigraphic groups and formations in the Upper Permian?–Lower Jurassic Newark Supergroup of eastern North America. Stratigraphy 13:111–153Google Scholar
  173. Wescott WA, Diggens JN (1998) Depositional history and stratigraphical evolution of the Sakamena Group (middle Karoo Supergroup) in the southern Morondava Basin, Madagascar. J African Earth Sci 27:461–479CrossRefGoogle Scholar
  174. Whiteside JH, Olsen PE, Eglinton T, Brookfield ME, Sambrotto RN (2010) Compound-specific carbon isotopes from Earth's largest flood basalt eruptions directly linked to the end-Triassic mass extinction. Proc Nat Acad Sci USA 107:6721–6725CrossRefGoogle Scholar
  175. Whiteside JH, Grogan DS, Olsen PE, Kent DV (2011) Climatically driven biogeographic provinces of Late Triassic tropical Pangea. Proc Natl Acad Sci U S A 108:8972–8977CrossRefGoogle Scholar
  176. Woods AW (1993) A model of the plumes above basaltic fissure eruptions. Geophys Res Lett 20:1115–1118CrossRefGoogle Scholar
  177. Xu G, Hannah JL, Stein HJ, Mørk A, Vigran JO, Bingen B, schutt DL, Lundschien BA (2014) Cause of Upper Triassic climate crisis revealed by Re–Os geochemistry of Boreal black shales. Palaeogeogr Palaeoclim Palaeoecol 395:222–232CrossRefGoogle Scholar
  178. Yan JX, Zhao K (2002) Permian–Triassic paleogeography of the East Tethyan region-the ancient climate and the evolution of ancient oceans and the Earths' surface-coupled multilayer case. Sci China Ser D 32:751–759Google Scholar
  179. Yapp CJ, Poths H (1996) Carbon isotopes in continental weathering environments and variations in ancient atmospheric CO2 pressure. Earth Planet Sci Lett 137:71–82CrossRefGoogle Scholar
  180. Zajzon N, Kristaly F, Nemeth T (2012) Detailed clay mineralogy of the Triassic-Jurassic boundary section at Kendlbachgraben (northern Calcareous Alps, Austria). Clay Min 47:177–189CrossRefGoogle Scholar
  181. Ziegler AM, Eshet G, McAllister Rees P, Rothfus TA, Rowley DB, Sunderlin D (2003) Tracing the tropics across land and sea: Permian to present. Lethaia 36:227–254CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Biological and Environmental SciencesLe Moyne CollegeSyracuseUSA

Personalised recommendations