Skip to main content

The Late Triassic Timescale

Part of the Topics in Geobiology book series (TGBI,volume 46)

Abstract

The Upper Triassic chronostratigraphic scale consists of one Series, the Upper Triassic, divided into three stages (in ascending order)—Carnian, Norian and Rhaetian. Only the base of the Carnian currently has an agreed on GSSP (global boundary stratotype section and point), though agreement on GSSPs for the bases of the Norian and Rhaetian is imminent. Substages of the Carnian and Norian provide more detailed subdivisions of Late Triassic time than do the relatively long Carnian and Norian stages. These substages need boundary definitions and greater use in Late Triassic correlations. Numerical chronology of the Late Triassic is based on very few radioisotopic ages from volcanic ash beds directly related to marine biostratigraphy. The numerical calibration of the Late Triassic favored here is Carnian ~220–237 Ma, Norian ~205–220 Ma and Rhaetian ~201–205 Ma. Late Triassic magnetostratigraphy is fraught with problems because the most complete record from the Newark Supergroup of eastern North America cannot be correlated based on pattern matching to any co-eval magnetostratigraphy from a marine section. The long Norian (beginning at ~228 Ma) was created by magnetostratigraphic correlations that abandoned biostratigraphic constraints and has produced extensive miscorrelation, particularly of nonmarine Carnian strata. A reliable Late Triassic magnetostratigraphy is a succession of multichrons that identifies the Carnian-early Norian and late Norian-Rhaetian as dominantly of normal polarity. Late Triassic cyclostratigraphy of the Newark Supergroup has been advanced as a floating astrochronology of the Late Triassic, but is problematic given evident hiatuses in the Newark record and the presence of non-cyclical lithofacies. Isotope stratigraphy of the Late Triassic, for example the late Rhaetian carbon-isotope excursion, has great potential for use in Late Triassic correlations. The Late Triassic timescale is still very much a work in progress that needs more precise chronostratigraphic definitions, additional numerical ages directly related to marine biostratigraphy, a wholesale rethinking of magnetostratigraphic correlations and additional cyclostratigraphic and isotopic data to achieve greater precision and stability.

Keywords

  • Late Triassic
  • Chronostratigraphy
  • Radioisotopic ages
  • Magnetostratigraphy
  • Astrochronology
  • Isotope stratigraphy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-68009-5_1
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-68009-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7

References

  • Ager D (1987) A defense of the Rhaetian Stage. Albertiana 6:4–13

    Google Scholar 

  • Atchley SC, Nordt LC, Dworkin SJ, Ramezani J, Parker WG, Ash SR, Bowring SA (2013) A linkage among Pangean tectonism, cyclic alluviation, climatic change, and biologic turnover in the Late Triassic: The record from the Chinle Formation, southwestern United States. J Sed Res 83:1147–1161

    CrossRef  Google Scholar 

  • Balini M, Lucas SG, Jenks JF, Spielmann JA (2010) Triassic ammonoid biostratigraphy: An overview. In: Lucas SG (ed) The Triassic timescale. Geological Society London Special Publications, vol 334, pp 221–262

    Google Scholar 

  • Bertinelli A, Casacci M, Concheri G, Gattolin G, Godfrey L, Katz ME, Maron M, Mazza M, Mietto P, Muttoni G, Rigo M, Sprovieri M, Stellin F, Zaffani M (2016) The Norian/Rhaetian boundary interval at Pignola-Abriola section (Southern Apennines, Italy) as a GSSP candidate for the Rhaetian Stage: An update. Albertiana 43:5–18

    Google Scholar 

  • Carter RM (1974) A New Zealand case-study of the need for local time-scales. Lethaia 7:181–202

    CrossRef  Google Scholar 

  • Carter ES, Orchard MJ (2007) Radiolarian-conodont-ammonoid intercalibration around the Norian-Rhaetian boundary and implications for trans-Panthalassan correlation. Albertiana 36:146–163

    Google Scholar 

  • Casacci M, Bertinelli A, Algeo TJ, Rigo M (2016) Carbonate-to-biosilica transition at the Norian-Rhaetian boundary controlled by rift-related subsidence in the western Tethyan Lagonegro basin (southern Italy). Palaeogeog, Paleoclimat, Palaeoecol 456:21–36

    CrossRef  Google Scholar 

  • Cirilli S, Marzoli A, Tanner LH, Bertrand H, Buratti N, Jourdan F, Bellieni G, Kontak D, Renne PR (2009) Late Triassic onset of the Central Atlantic Magmatic Province (CAMP) volcanism in the Fundy Basin (Nova Scotia): New stratigraphic constraints. Earth Planet Sci Lett 286:514–525

    CrossRef  Google Scholar 

  • Cooley ME (1957) Geology of the Chinle Formation in the upper Little Colorado drainage area, Arizona and New Mexico. MS thesis, University of Arizona, Tucson

    Google Scholar 

  • Cope JCW (1996) The role of the secondary standard in stratigraphy. Geol Mag 133:107–110

    CrossRef  Google Scholar 

  • Currie BS, Colombi CE, Tabor NJ, Shipman TC, Montanez IP (2009) Stratigraphy and architecture of the Upper Triassic Ischigualasto Formation, Ischigualasto Provincial Park, San Juan, Argentina. J S Am Earth Sci 27:74–87

    CrossRef  Google Scholar 

  • Dal Corso J, Mietto P, Newton RJ, Pancost RD, Preto N, Roghi G, Wignall PB (2012) Discovery of a major negative δ13C spike in the Carnian (Late Triassic) linked to the eruption of Wrangellia flood basalts. Geology 40:79–82

    CrossRef  Google Scholar 

  • Darton NH (1910) A reconnaissance of parts of northwestern New Mexico and northern Arizona. US Geol Surv Bull 435:1–88

    Google Scholar 

  • Darton NH (1928) “Red beds” and associated formations in New Mexico with an outline of the geology of the state. US Geol Surv Bull 794:1–356

    Google Scholar 

  • Diakow L, Orchard MJ, Friedman R (2011) Absolute age for the Norian Stage: A contribution from southern British Columbia, Canada. Canad Paleont Conf Proc 9:27–28

    Google Scholar 

  • Diener C (1921) Die Faunen der Hallstatter Kalke des Feuerkogels bei Aussee. Akad Wiss Wien, Math-naturwiss Klasse Sitzungsber 130:21–33

    Google Scholar 

  • Diener C (1926) Die Fossillagerstätten in den Halstätter Kalken des Salzkammergutes. Akad Wissen Wien, Math-naturwiss Klasse Sitzungsber 135:73–101

    Google Scholar 

  • Froelich AJ, Olsen PE (1984) Newark Supergroup, a revision of the Newark Group in eastern North America. US Geol Surv Bull 1537-A:A55–A58

    Google Scholar 

  • Furin S, Preto N, Rigo M, Roghi G, Gianolla P, Crowley JL, Bowring SA (2006) High-precision U-Pb zircon age from the Triassic of Italy: Implications for the Triassic time scale and the Carnian origin of calcareous nannoplankton and dinosaurs. Geology 34:1009–1012

    CrossRef  Google Scholar 

  • Gaetani M (1996) The International Subcommission on Triassic Stratigraphy. Albertiana 18:3–4

    Google Scholar 

  • Gaetani M (2009) GSSP of the Carnian Stage defined. Albertiana 37:36–38

    Google Scholar 

  • Giordano N, Rigo M, Ciarapica G, Bertinelli A (2010) New biostratigraphical constraints for the Norian/Rhaetian boundary: Data from Lagonegro basin, Southern Appenines, Italy. Lethaia 43:573–586

    CrossRef  Google Scholar 

  • Golding ML, Mortensen JK, Zonneveld J-P, Orchard MJ (2016) U-Pb isotopic ages of euhedral zircons in the Rhaetian of British Columbia: Implications for Cordilleran tectonics during the Late Triassic. Geosphere 12:1606–1161

    CrossRef  Google Scholar 

  • Harland WB, Cox AV, Llewellyn PG, Pickton CAG, Smith AG, Walters R (1982) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Harland WB, Armstrong RL, Cox AV, Craig LE, Smith AG, Smith DG (1990) A geologic time scale. Cambridge University Press, Cambridge

    Google Scholar 

  • Heckert AB, Lucas SG (2002) Lower Chinle Group (Upper Triassic: Carnian) stratigraphy in the Zuni Mountains, west-central New Mexico. New Mex Mus Nat Hist Sci Bull 21: 51–72

    Google Scholar 

  • Hinnov LA, Ogg JG (2007) Cyclostratigraphy and the astronomical timescale. Strat 4:239–251

    Google Scholar 

  • Hounslow MW, Muttoni G (2010) The geomagnetic polarity timescale for the Triassic: Linkage to stage boundary definitions. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ, vol 334, pp 61–102

    Google Scholar 

  • Hüsing SK, Deenen MHL, Koopmans JG, Krijgsman W (2011) Magnetostratigraphic dating of the proposed Rhaetian GSSP at Steinbergkogel (Upper Triassic, Austria): Implications for the Late Triassic time scale. Earth Planet Sci Lett 302:203–216

    CrossRef  Google Scholar 

  • Ikeda M, Tada R (2014) A 70 million year astronomical time scale for the deep-sea bedded chert sequence (Inuyama, Japan): Implications for Triassic-Jurassic geochronology. Earth Planet Sci Lett 399:30–43

    CrossRef  Google Scholar 

  • Jenks JF, Monnet C, Balini M, Brayard A, Meier M (2015) Biostratigraphy of Triassic ammonoids. In: Klug C et al (eds) Ammonoid paleobiology: From macroevolution to paleogeography. Top Geobiol, vol 44. Springer, Dordrecht, pp 329–388

    CrossRef  Google Scholar 

  • Kent DV, Olsen PE (1999) Astronomically tuned geomagnetic polarity time scale for the Late Triassic. J Geophys Res 104:12831–12841

    CrossRef  Google Scholar 

  • Kent DV, Malnis PS, Colombi CE, Alcober OA, Martinez RD (2014) Age constraints on the dispersal of dinosaurs in the Late Triassic from magnetochronology of the Los Colorados Formation (Argentina). Proc Nat Acad Sci USA 111:7958–7963

    CrossRef  Google Scholar 

  • Kent DV, Olsen PE, Muttoni G (2017) Astrochronostratigraphic polarity time scale (ATS) for the Late Triassic and Early Jurassic from continental sediments and correlation with standard marine stages. Earth-Sci Rev 166:153–180

    Google Scholar 

  • Kittl E (1903) Geologische Exkursionen im Salzkammergut. 9th Internat Geol Congr, Vienna 1903, Führer Exkurs Österr, 4, part 3

    Google Scholar 

  • Kohút M, Hofmann M, Havrila M, Linnemann U, Havrila J (2017) Tracking an upper limit of the “Carnian crisis” and/or Carnian Stage in the Western Carpathians (Slovakia). Internat J Earth Sci. doi: 10.10007/s00531-017-1491-8

    Google Scholar 

  • Korte C, Kozur HW, Bruckschen P, Veizer J (2003) Strontium isotope evolution of late Permian and Triassic seawater. Geochim Cosmochim Acta 67:47–62

    CrossRef  Google Scholar 

  • Korte C, Kozur HW, Veizer J (2005) δ13C and δ18O values of Triassic brachiopods and carbonate rocks as proxies for coeval seawater and palaeotemperature. Palaeogeog Palaeoclimat Palaeoecol 226:287–306

    CrossRef  Google Scholar 

  • Kozur HW, Bachmann GH (2005) Correlation of the Germanic Triassic with the international scale. Albertiana 32:21–35

    Google Scholar 

  • Kozur HW, Bachmann GH (2008) Updated correlation of the Germanic Triassic with the Tethyan scale and assigned numeric ages. Berich Geol Bundes-Anstalt 76:53–58

    Google Scholar 

  • Kozur H, Weems RE (2005) Conchostracan evidence for a late Rhaetian to early Hettangian age for the CAMP volcanic event in the Newark Supergroup, and a Sevatian (late Norian) age for the immediately underlying beds. Hall Jahrb Geowisse B27:21–51

    Google Scholar 

  • Kozur H, Weems RE (2007) Upper Triassic conchostracan biostratigraphy of the continental rift basins of eastern North America: Its importance for correlating Newark Supergroup events with the Germanic basin and the international geologic timescale. New Mex Mus Nat Hist. Sci Bull 41:137–188

    Google Scholar 

  • Kozur HW, Weems RE (2010) The biostratigraphic importance of conchostracans in the continental Triassic of the northern hemisphere. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334: 315–417

    Google Scholar 

  • Krystyn L (1978) Eine neue Zonengliederung im alpin-mediterranean Unterkarn. Schriftenr Erdwissen Kommiss Oster Akad Wissen 4:37–75

    Google Scholar 

  • Krystyn L (1980) Stratigraphy of the Hallstatt region. Abhand Geol Bundesan Wien 35:69–98

    Google Scholar 

  • Krystyn L (2010) Decision report on the defining event for the base of the Rhaetian stage. Albertiana 38:11–12

    Google Scholar 

  • Krystyn L, Schlager W (1971) Der Stratotypus des Tuval. Ann Instit Geol Pub Hungar 54:591–605

    Google Scholar 

  • Krystyn L, Boquerel H, Kuerschner W, Richoz S, Gallet Y (2007a) Proposal for a candidate GSSP for the base of the Rhaetian Stage. New Mex Mus Nat Hist. Sci Bull 41:189–199

    Google Scholar 

  • Krystyn L, Richoz S, Gallet Y, Boquerel H, Kurschner W, Spötl C (2007b) Updated bio- and magnetostratigraphy from Steinbergkogel (Austria), candidate GSSP for the base of the Rhaetian Stage. Albertiana 36:164–173

    Google Scholar 

  • Kummel B (1979) Treatise on Invertebrate Paleontology. Part A. Triassic. Geol Soc Am, Univ Kansas, Boulder and Lawrence, pp 351–389

    Google Scholar 

  • Lieberman HM (1980) The suitability of the Raibl sequence as a stratotype for the Carnian Stage and the Julian Substage of the Triassic. Newsl Strat 9:35–42

    Google Scholar 

  • Lucas SG (1999) The epicontinental Triassic, an overview. Zentralbl Geol Paläont Teil I 1998:475–496

    Google Scholar 

  • Lucas SG (2010) The Triassic chronostratigraphic scale: History and status. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334: 17–39

    Google Scholar 

  • Lucas SG (2011) Multichron. Lethaia 43:282

    CrossRef  Google Scholar 

  • Lucas SG (2013) A new Triassic timescale. New Mex Mus Nat Hist. Sci Bull 61:366–374

    Google Scholar 

  • Lucas SG (2017) Late Triassic Ammonoids: distribution, biostratigraphy and biotic events. In: Tanner LH (ed) The Late Triassic world: earth in a time of transition. Topics in geobiology, Springer (this volume)

    Google Scholar 

  • Lucas SG, Orchard MJ (2004) Triassic. In: Selley RC, Cocks LMR, Plimer IR (eds) Encyclopedia of geology. Elsevier, Amsterdam, pp 344–351

    Google Scholar 

  • Lucas SG, Tanner LH (2007) The nonmarine Triassic-Jurassic boundary in the Newark Supergroup of eastern North America. Earth Sci Rev 84:1–20

    CrossRef  Google Scholar 

  • Lucas SG, Taylor DG, Guex J, Tanner LH, Krainer K (2007) The proposed global stratotype section and point for the base of the Jurassic System in the New York Canyon area, Nevada, USA: New Mex Mus Nat Hist. Sci Bull 40:139–168

    Google Scholar 

  • Lucas SG, Tanner LH, Donohoo-Hurley LL, Geissman JW, Kozur HW, Heckert AB, Weems RE (2011) Position of the Triassic-Jurassic boundary and timing of the end- Triassic extinctions on land: Data from the Moenave Formation on the southern Colorado Plateau, USA. Palaeogeog Palaeoecol Palaeoclimatol 302:194–205

    CrossRef  Google Scholar 

  • Lucas SG, Tanner LH, Kozur HW, Weems RE, Heckert AB (2012) The Late Triassic timescale: Age and correlation of the Carnian-Norian boundary. Earth-Sci Rev 114:1–18

    CrossRef  Google Scholar 

  • Manspeizer W (1988) Triassic-Jurassic rifting and opening of the Atlantic: an overview. In: Manspeizer W (ed) Triassic-Jurassic rifting, continental breakup, and the formation of the Atlantic Ocean and passive margins. Elsevier, Amsterdam, Developments in Geotectonics, pp 22–41

    Google Scholar 

  • Manspeizer W, Puffer JH, Cousimer HL (1978) Separation of Morocco and eastern North America: a Triassic-Liassic stratigraphic record. Geol Soc Amer Bull 89:901–920

    CrossRef  Google Scholar 

  • Maron M, Rigo M, Bertinelli A, Katz ME, Godfrey L, Zaffani M, Muttoni G (2015) Magnetostratigraphy, biostratigraphy, and chemostratigraphy of the Pignola-Abriola section: New constraints for the Norian-Rhaetian boundary. Geol Soc Amer Bull 127:962–974

    Google Scholar 

  • Martínez RN, Apaldetti C, Alcober OA, Colombi CE, Sereno PC, Fernandez E, Malnis PS, Correa GA, Abelin D (2013) Vertebrate succession in the Ischigualasto Formation. J Vert Paleont Mem 12:10–20

    Google Scholar 

  • Mazza M, Furin S, Spotl C, Rigo M (2010) Generic turnovers of Carnian/Norian conodonts: Climatic control or competition? Palaeogeogr Palaeoclimat Palaeoecol 290:120–137

    CrossRef  Google Scholar 

  • Mazza M, Rigo M, Nicora A (2011) A new Metapolygnathus platform conodont species and its implications for upper Carnian global correlations. Acta Palaeont Polon 56:121–131

    CrossRef  Google Scholar 

  • Mazza M, Rigo M, Gullo M (2012) Taxonomy and stratigraphic record of the Upper Triassic conodonts of the Pizzo Mondello section (western Sicily, Italy), GSSP candidate for the base of the Norian. Riv Ital Paleont Strat 118:85–130

    Google Scholar 

  • McArthur JM, Hawarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 127–144

    CrossRef  Google Scholar 

  • McElwain JC, Popa ME, Hesselbo SP, Haworth M, Surlyk F (2007) Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the Triassic/Jurassic boundary in East Greenland. Paleobiology 33:547–573

    CrossRef  Google Scholar 

  • Mietto P, Andreetta R, Broglio Loriga C, Buratti N, Cirilli S, De Zanche V, Furin S, Gianolla P, Manfrin S, Muttoni G, Neri C, Nicora A, Posenato R, Preto N, Rigo M, Roghi G, Spötl C (2007a) A candidate of the global stratotype section and point for the base of the Carnian Stage (FAD of Daxatina) in the Prati di Stuores/Stuores Wiesen section (southern Alps, NE Italy). Albertiana 6:78–97

    Google Scholar 

  • Mietto P, Buratti N, Cirilli S, De Zanche V, Gianolla P, Manfrin S, Nicora A, Preto N, Rigo M, Roghi G (2007b) New constraints for the Ladinian-Carnian boundary in the southern Alps: Suggestions for global correlation. New Mex Mus Nat Hist. Sci Bull 41:275–281

    Google Scholar 

  • Mietto P, Manfrin S, Preto N, Rigo M, Roghi G, Furin S, Gianolla P, Posenato R, Muttoni G, Nicora A, Buratti N, Cirilli S, Spitl C, Ramezani J, Bowring SA (2012) The global boundary stratotype section and point (GSSP) of the Carnian Stage (Late Triassic) at Prati di Stuores/Stuores Wiesen section (southern Alps, NE Italy). Episodes 35:414–430

    Google Scholar 

  • Mundil R, Pálfy J, Renne PR, Brack P (2010) The Triassic time scale: New constraints and a review of geochronological data. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334: 41–60

    Google Scholar 

  • Muttoni G, Kent DV, Olsen PE, Di Stefano P, Lowrie W, Bernasconi SM, Hernandez FM (2004) Tethyan magnetostratigraphy from Pizzo Mondello (Sicily) and correlation to the late Triassic Newark astrochronological polarity time scale. Geol Soc Amer Bull 116:1043–1058

    CrossRef  Google Scholar 

  • Muttoni G, Kent DV, Jadoul F, Olsen PE, Rigo M, Galli MT, Nicora A (2010) Rhaetian magneto-biostratigraphy from the Southern Alps (Italy): Constraints on Triassic chronology. Palaeogeogr Palaeoclimat Palaeoecol 285:1–16

    CrossRef  Google Scholar 

  • Ogg JG (2004) The Triassic Period. In: Gradstein FM, Ogg J, Smith A (eds) A geologic time scale 2004. Cambridge University Press, Cambridge, pp 271–306

    Google Scholar 

  • Ogg JG (2012) Triassic. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 681–730

    CrossRef  Google Scholar 

  • Ogg JG, Huang C, Hinnov L (2014) Triassic timescale status: A brief overview. Albertiana 41:3–30

    Google Scholar 

  • Olsen PE (1997) Stratigraphic record of the early Mesozoic breakup of Pangea in the Laurasia-Gondwana rift system. Annu Rev Earth Planet Sci 25:337–401

    CrossRef  Google Scholar 

  • Olsen PE, Kent DV (1996) Milankovitch climate forcing in the tropics of Pangea during the Late Triassic. Palaeogeog Palaeoclimat Palaeoecol 122:1–26

    CrossRef  Google Scholar 

  • Olsen PE, Whiteside JH (2008) Pre-Quaternary Milankovitch cycles and climate variability. In: Gornitz V (ed) Encyclopedia of paleoclimatology and ancient environments, Earth Science Series. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 826–835

    Google Scholar 

  • Olsen PE, Kent DV, Cornet B, Witte WK, Schlische RW (1996) High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geol Soc Amer Bull 108:40–77

    CrossRef  Google Scholar 

  • Olsen PE, Kent DV, Whiteside JH (2011) Implications of the Newark Supergroup-based astrochronology and geomagnetic polarity time scale (Newark-APTS) for the tempo and mode of the early diversification of the Dinosauria. Earth Env Sci Trans Royal Soc Edinburgh 101:201–229

    CrossRef  Google Scholar 

  • Orchard MJ (2010) Triassic conodonts and their role in stage boundary definition. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334: 139–161

    Google Scholar 

  • Orchard MJ (2013) Five new genera of conodonts from the Carnian-Norian boundary beds, northeast British Columbia, Canada. New Mex Mus Nat Hist. Sci Bull 61:445–457

    Google Scholar 

  • Orchard MJ (2014) Conodonts from the Carnian-Norian boundary (Upper Triassic) of Black Bear Ridge, northeastern British Columbia, Canada. New Mex Mus Nat Hist. Sci Bull 64:1–139

    Google Scholar 

  • Pearson DAB (1970) Problems of Rhaetian stratigraphy with special reference to the lower boundary of the stage. J Geol Soc Lond 146:125–150

    CrossRef  Google Scholar 

  • Ramezani J, Hoke GD, Fastovsky DE, Bowring SA, Therrien F, Dworkin SI, Atchley SC, Nordt LC (2011) High-precision U-Pb zircon geochronology of the Late Triassic Chinle Formation, Petrified Forest National Park (Arizona, USA): Temporal constraints on the early evolution of dinosaurs. Geol Soc Amer Bull 123:2142–2159

    CrossRef  Google Scholar 

  • Ramezani J, Fastovsky DE, Bowring SA (2014) Revised chronostratigraphy of the lower Chinle Formation strata in Arizona and New Mexico (USA): High-precision U-Pb geochronological constraints on the Late Triassic evolution of dinosaurs. Amer J Sci 314:981–1008

    CrossRef  Google Scholar 

  • Remane J, Basset MG, Cowie JW, Gohrandt KH, Lane HR, Michelsen O, Naiwen W (1996) Revised guidelines for the stablishment of global chronostratigraphic standards by the International Commission of Stratigraphy (ICS). Episodes 19:77–81

    Google Scholar 

  • Rigo M, Bertinelli A, Concheri G, Gattolin G, Godfrey L, Katz ME, Maron M, Mietto P, Muttoni G, Sprovieri M, Stellin F, Zaffani M (2016) The Pignola-Abriola section (southern Appenines, Italy): A new GSSP candidate for the base of the Rhaetian Stage. Lethaia 49:287–306

    CrossRef  Google Scholar 

  • Rogers RR, Swisher CC III, Sereno PC, Monetta AM, Forster CA, Martinez RC (1993) The Ischigualasto tetrapod assemblage (Late Triassic, Argentina) and 40Ar/39Ar dating of dinosaur origins. Science 260:794–797

    CrossRef  Google Scholar 

  • Saltzman MR, Thomas E (2012) Carbon isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Amsterdam, pp 207–232

    CrossRef  Google Scholar 

  • Salvador A (1994) International stratigraphic guide, 2nd edn. Geological Society of America, Boulder

    Google Scholar 

  • Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharova M (2008) Precise U-Pb constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267:266–275

    CrossRef  Google Scholar 

  • Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387–390

    CrossRef  Google Scholar 

  • Sephton MA, Amor K, Franchi IA, Wignall PB, Newton R, Zonneveld J-P (2002) Carbon and nitrogen isotope disturbances and an end-Norian (Late Triassic) extinction event. Geology 30:1119–1122

    CrossRef  Google Scholar 

  • Shipman TC (2004) Links between sediment accumulation rates and the development of alluvial architecture: Triassic Ischigualasto Formation, northwestern Argentina. PhD dissertation, University of Arizona, Tucson

    Google Scholar 

  • Silberling NJ, Tozer ET (1968) Biostratigraphic classification of the marine Triassic in North America. Geol Soc Amer Spec Pap 110:1–63

    CrossRef  Google Scholar 

  • Smith AG, Barry T, Bown P, Cope J, Gale A, Gibbard P, Gregory J, Hounslow M, Kemp D, Knox R, Marshall J, Oates M, Rawson P, Powell J, Waters C (2015) GSSPs, global stratigraphy and correlation. In: Smith DG, Bailey RJ, Burgess PM, Fraser AJ (eds) Strata and time: probing the gaps in our understanding. Geol Soc London Spec Publ 404: 37–67

    Google Scholar 

  • Stewart JH, Poole FG, Wilson RF (1972) Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the Colorado Plateau region. US Geol Surv Prof Pap 690:1–356

    Google Scholar 

  • Stockar R, Baumgartner PO, Condon D (2012) Integrated Ladinian bio-chronostratigraphy and geochronology of Monte San Giorgio (Southern Alps, Switzerland). Swiss J Geosci 105:85–108

    CrossRef  Google Scholar 

  • Sues HD, Fraser NC (2010) Triassic life on land: the great transition. Columbia University Press, New York

    Google Scholar 

  • Tackett LS, Kaufman AJ, Corsetti FA, Bottjer DJ (2014) Strontium isotope stratigraphy of the Gabbs Formation (Nevada): Implications for global Norian-Rhaetian correlations and faunal turnover. Lethaia 47:500–511

    CrossRef  Google Scholar 

  • Tanner LH (2010) Cyclostratigraphic record of the Triassic: A critical examination. In: Lucas SG (ed) The Triassic timescale. Geol Soc London Spec Publ 334: 119–137

    Google Scholar 

  • Tanner LH, Lucas SG (2015) The Triassic-Jurassic strata of the Newark basin, USA: A complete and accurate astronomically-tuned timescale? Strat 12:47–65

    Google Scholar 

  • Tozer ET (1967) A standard for Triassic time. Geol Surv Canada Bull 156:1–103

    Google Scholar 

  • Tozer ET (1971) Triassic time and ammonoids: Problems and proposals. Canad J Earth Sci 8:989–1031

    CrossRef  Google Scholar 

  • Tozer ET (1974) Definitions and limits of Triassic stages and substages: Suggestions prompted by comparisons between North America and the Alpine-Mediterranean region. Schrift Erdwissen Kommiss Oster Akad Wiss 2:195–206

    CrossRef  Google Scholar 

  • Tozer ET (1984) The Trias and its ammonoids: The evolution of a time scale. Geol Surv Canada Misc Rep 35:1–171

    Google Scholar 

  • Tozer ET (1985) Subcommission on Triassic Stratigraphy (STS): History 1968-1984. Albertiana 3:3–6

    Google Scholar 

  • Tozer ET (1994) Canadian Triassic ammonoid faunas. Geol Surv Canada Bull 467:1–663

    Google Scholar 

  • von Alberti F (1834) Beitrag zu einer Monographie des Bunten Sandsteins, Muschelkalks und Keupers, und die Verbindung dieser Gebilde zu einer Formation. Verlag der J. G. Cotta’sschen Buchhandlung, Stuttgart und Tübingen [Facsimile reprinted in 1998 by the Friedrich von Alberti-Stiftung der Hohenloher Muschelkalkwerke, Ingelfingen, Germany]

    Google Scholar 

  • von Bittner A (1892) Was ist norisch? Geol Reichsanstalt Jahrb 42:387–396

    Google Scholar 

  • von Gümbel CW (1859) Über die Gleichstellung der Gesteinmasen in den nord-östlichen Alpen mit ausseralpinen Flötzschichten. Verhandn Gesellsch Deutsch Naturforsch Ärtzte Karlsruhe 54:80–88

    Google Scholar 

  • von Gümbel CW (1861) Geognostische Beschreibung des bayerischen Alpengebirges. J Perthes, Gotha

    Google Scholar 

  • von Hillebrandt A, Krystyn L, Kürschner WM, Bonis NR, Ruhl M, Richoz S, Schobben MAN, Ulrichs M, Bown PR, Kment K, McRoberts CA, Simms M, Tomãsových A (2013) The global stratotype sections and point (GSSP) for the base of the Jurassic System at Kuhjoch (Karwendel Mountains, Northern Calcareous Alps, Tyrol, Austria). Episodes 36:162–198

    Google Scholar 

  • von Mojsisovics E (1869) Über die Gliederung der oberen Triasbildungen der östlichen Alpen. Geol Reichsanstalt Jahrb 24:91–150

    Google Scholar 

  • von Mojsisovics E (1874) Faunengebeite und Faciesgebilde der Trias-Periode in den Ost-Alpen—Eine stratigraphische studie. Geol Reichsanstalt Jahrb 24:81–134

    Google Scholar 

  • von Mojsisovics E (1892) Die Hallstätter Entwicklunung der Trias. Sitzungsber Akad Wissen Wien 101:769–780

    Google Scholar 

  • von Mojsisovics E (1902) Die Cephalopoden der Hallstätter Kalke. Geol Reichsanstalt Abhand 6:175–356

    Google Scholar 

  • von Mojsisovics E, Waagen WH, Diener C (1895) Entwurf einer Gliederung der pelagischen Sediments des Trias-Systems. Akad Wiss Wien. Math-naturwiss Klasse Sitzungsber 104:1279–1302

    Google Scholar 

  • Walsh SL, Gradstein FM, Ogg JG (2004) History, philosophy, and application of the Global Stratotype Section and Point. Lethaia 37:201–218

    CrossRef  Google Scholar 

  • Weems RE, Lucas SG (2015) A revision of the Norian conchostracan zonation in North America and its implications for Late Triassic North American tectonic history. New Mex Mus Nat Hist. Sci Bull 67:303–317

    Google Scholar 

  • Weems RE, Tanner LH, Lucas SG (2016) Synthesis and revision of the lithostratigraphic groups and formations in the upper Permian?-Lower Jurassic Newark Supergroup of eastern North America. Strat 13:111–153

    Google Scholar 

  • Wotzlaw J-F, Guex J, Bartolini A, Gallet Y, Krystyn L, McRoberts CA, Taylor D, Schoene B, Schaltegger U (2014) Towards accurate numerical calibration of the latest Triassic: High precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42:571–574

    CrossRef  Google Scholar 

  • Zapfe H (1971) Die stratotypen des Anis, Tuval und Nor und ihre Bedeutung für die Biostratigraphie und Biostratinomie der Alpinen Trias. Ann Instit Geol Pub Hungar 54:579–590

    Google Scholar 

  • Zittel KA (1901) History of geology and palaeontology to the end of the nineteenth century. Walter Scott, London

    Google Scholar 

Download references

Acknowledgments

I am grateful to numerous colleagues, and particularly members of the STS, for educating me about the Triassic timescale during the last 25 years. Chris McRoberts provided the base map for Figure 1, and Karl Krainer assisted with the preparation of Figure 3. Mark Hounslow and Larry Tanner provided helpful reviews of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spencer G. Lucas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Lucas, S.G. (2018). The Late Triassic Timescale. In: Tanner, L. (eds) The Late Triassic World. Topics in Geobiology, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-319-68009-5_1

Download citation