Expansion of Arthropod Herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 Site and Developmental Biology of a Gall

  • Conrad C. Labandeira
  • John M. Anderson
  • Heidi M. Anderson
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 46)

Abstract

The Carnian Aasvoëlberg 411 (Aas411) site of the Molteno Formation in South Africa provides exceptional data for understanding how plants, their arthropod herbivores and interactions responded to the P-Tr ecological crisis approximately 18 million years earlier. Our study lists six consequences stemming from the P-Tr event. First, Aas411 was one of the most herbivorized of Molteno’s 106 sites, consisting of 20,358 plant specimens represented by 111 plant form-taxa that includes 14 whole-plant taxa (WPT); the insect damage consists of 11 functional feeding groups (FFGs), 44 damage types (DTs) and 1127 herbivorized specimens for an herbivory value of 5.54%. Second, the seven most herbivorized hosts, in decreasing importance, were the conifer Heidiphyllum elongatum; corystosperm Dicroidium crassinervis; ginkgophyte Sphenobaiera schenckii, peltasperms Lepidopteris stormbergensis and L. africana and horsetail Zonulamites viridensis. Third, generalized feeding damage and 11 host-specialized associations were present that targeted 39 of 111 plant taxa. Fourth, the Heidiphyllum elongatum WPT was most herbivorized, harboring an extensive herbivore component community containing 81.8% of FFGs, 63.6% of DT categories, 40.9% of DT occurrences, and 36.4% of specialized interactions at the site. Fifth, eriophyioid gall DT70 was host-specialized on Dicroidium crassinervis, where it constitutes 70.1% of all Molteno DT70 occurrences and revealing a distinctive developmental ontogeny. Sixth, herbivory levels significantly surpassed those of the Late Permian.

Keywords

Carnian Component community Damage Type Dicroidium crassinervis End-Permian extinction Gondwana Heidiphyllum elongatum Karoo Basin Mite gall Plant–insect interactions 

Notes

Acknowledgements

Thanks go to Finnegan Marsh for formatting Figs. 14.1 to 14.13. Pfarelo (Grace) Tshivhandekano provided the images from which Fig. 14.5 to 14.10 were assembled. Jennifer Wood rendered and colorized Figs. 14.11 and 14.12. We thank an anonymous reviewer for constructive comments and Larry Tanner for inviting this contribution. This work is contribution 320 of the Evolution of Terrestrial Ecosystems consortium at the National Museum of Natural History, in Washington, D.C.

References

  1. Adami-Rodrigues K, Iannuzzi R, Pinto ID (2004) Permian plant–insect interactions from a Gondwana flora of Southern Brazil. Foss Strat 51:106–125Google Scholar
  2. Adami-Rodrigues K, Souza PA, Iannuzzi R, Pinto ID (2004) Herbivoria em floras Gonduânicas do Neopaleózoico do Rio Grande do Sul: análise quantitativa. Rev Brasil Paleontol 7:93–202CrossRefGoogle Scholar
  3. Alford DV (1991) A colour atlas of pests of ornamental trees, shrubs and flowers. Wolfe Publishing, London, p 448Google Scholar
  4. van Amerom HWJ (1973) Gibt es Cecidien im Karbon bei Calamiten und Asterophylliten? In: Josten KH (ed) Compte Rendu Septième Congrès International de Stratigraphie et de Géologie du Carbonifère. Geologisches Landesamt Nordrhein-Westfalen, Krefeld, Germany, pp 63–83Google Scholar
  5. Ananthakrishnan TN, Raman A (1989) Thrips and Gall dynamics. Leiden, Brill, p 120Google Scholar
  6. Anderson JM, Anderson HM (1983) Palaeoflora of Southern Africa Molteno Formation (Triassic). Volume 1: part 1. Introduction/part 2. Dicroidium. Balkema, Rotterdam, p 227Google Scholar
  7. Anderson JM, Anderson HM (1985) Palaeoflora of Southern Africa: prodromus of South African megafloras, Devonian to Lower Cretaceous. Balkema, Rotterdam, p 423Google Scholar
  8. Anderson JM, Anderson HM (1989) Palaeoflora of Southern Africa Molteno Formation (Triassic). Volume 2: Gymnosperms (Dicroidium). Balkema, Rotterdam, p 567Google Scholar
  9. Anderson JM, Anderson HM (1993) Terrestrial flora and fauna of the Gondwana Triassic: Part 2—co-evolution. The Nonmarine Triassic: New Mexico Nat Hist Sci Bull 3:13–25Google Scholar
  10. Anderson JM, Anderson HM (2003) Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications. Strelitzia 15:1–398Google Scholar
  11. Anderson HM, Anderson JM (2008) Molteno ferns: Late Triassic biodiversity in Southern Africa. Strelitzia 21:1–258Google Scholar
  12. Anderson HM, Anderson JM (2017) Molteno sphenophytes: Late Triassic biodiversity in Southern Africa. Evol Stud Inst Monogr Ser 1:1–191. pls 180Google Scholar
  13. Anderson JM, Anderson HM, Archangelsky S, Bamford M, Chandra S, Dettmann M, Hill R, McLoughlin S, Rösler O (1999) Patterns of Gondwana plant colonization and diversification. J Afr Earth Sci 145:145–167CrossRefGoogle Scholar
  14. Anderson JM, Anderson HM, Cleal CJ (2007) Brief history of the gymnosperms: classification, biodiversity, phytogeography and ecology. Strelitzia 20:1–280Google Scholar
  15. Anderson JM, Anderson HM, Cruickshank ARI (1998) Late Triassic ecosystems of the Molteno/Lower Elliott Biome of southern Africa. Palaeontology 41:387–421Google Scholar
  16. Anderson JM, Anderson HM, Fatti P, Sichel H (1996) The Triassic explosion (?): a statistical model for extrapolating biodiversity based on the terrestrial Molteno Formation. Paleobiology 22:318–328CrossRefGoogle Scholar
  17. Anderson JM, Kohring R, Schlüter T (1998) Was insect biodiversity in the Triassic akin to today? A case study from the Molteno Formation (South Africa). Entomol Gen 23:15–26CrossRefGoogle Scholar
  18. Arnold BC (1965) Structure and growth of mite-induced galls of Hoheria sexstylosa Col. Pac Sci 19:502–506Google Scholar
  19. Ash S (1972) Late Triassic plants from the Chinle Formation in northeastern Arizona. Palaeontology 15:598–618Google Scholar
  20. Ash S (1997) Evidence of arthropod–plant interactions in the Upper Triassic of the southwestern United States. Lethaia 29:239–248Google Scholar
  21. Ash S (1999) An Upper Triassic Sphenopteris showing evidence of insect predation from Petrified Forest National Park, Arizona. Internat J Pl Sci 160:208–215CrossRefGoogle Scholar
  22. Ash S (2000) Evidence of oribatid mite herbivory in the stem of a Late Triassic tree fern from Arizona. J Paleontol 74:1065–1071CrossRefGoogle Scholar
  23. Ash S (2009) A Late Triassic flora and associated invertebrate fossils from the basal beds of the Chinle Formation in Dinnebito Wash, eastcentral Arizona, USA. Palaeontographica Abt B 282:1–37CrossRefGoogle Scholar
  24. Ash SR (2014) Contributions to the Upper Triassic Chinle flora in the American Southwest. Palaeobiodiv Palaeoenviron 94:279–294CrossRefGoogle Scholar
  25. Ash S, Savidge RA (2004) The bark of the Late Triassic Araucarioxylon arizonicum tree from Petrified Forest National Park, Arizona. Internat Assoc Wood Anat J 25:349–368Google Scholar
  26. Barboni R, Dutra TL (2015) First record of Ginkgo-related fertile organs (Hamshawvia, Stachyopitys) and leaves (Baiera, Sphenobaiera) in the Triassic of Brazil, Santa Maria Formation. J So Am Earth Sci 63:417–435CrossRefGoogle Scholar
  27. Beck AL, Labandeira CC (1998) Early Permian insect folivory on a gigantopterid-dominated riparian flora from North-central Texas. Palaeogeogr Palaeoclimat Palaeoecol 142:139–173CrossRefGoogle Scholar
  28. Bedard WD (1968) The sugar pine cone beetle. US Dept Agric For Pest Leaf 112:1–6Google Scholar
  29. Béthoux O, Papier F, Nel A (2005) The Triassic radiation of the entomofauna. C R Palevol 4:609–621CrossRefGoogle Scholar
  30. Bird RD (1926) The Life History of the Saskatoon Sawfly, Hoplocampa halcyon Nort. Master’s Thesis, University of Manitoba, Treesbank, Manitoba, pp 21Google Scholar
  31. Blank SM, Schmidt S, Taeger A (eds) (2006) Recent Sawfly research: synthesis and prospects. Goecke & Evers, Keltern, Germany, p 702Google Scholar
  32. Boczek J, Shevchenko VG (1996) Ancient associations: eriophyoid mites on gymnosperms. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 217–225CrossRefGoogle Scholar
  33. Bomfleur B, Decombeix A-L, Escapa IH, Schwendemann AB, Axsmith B (2013) Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. Int J Plant Sci 174:425–444CrossRefGoogle Scholar
  34. Boughton AJ, Pemberton RW (2011) Limited field establishment of a weed biocontrol agent, Floracarus perrepae (Acariformes: Eriophyidae), against Old World climbing fern in Florida—a possible role of mite resistant plant genotypes. Environ Entomol 40:1448–1457CrossRefGoogle Scholar
  35. Brues CT (1924) The specificity of food plants in the evolution of phytophagous insects. Am Nat 58:127–144CrossRefGoogle Scholar
  36. Burdfield-Steel ER, Shuker DM (2014) The evolutionary ecology of the Lygaeidae. Ecol Evol 4:2278–2301Google Scholar
  37. Burdick DJ (1961) A taxonomic and biological study of the genus Xyela Dalman in North America. Univ Calif Publ Entomol 17:281–353Google Scholar
  38. Cairncross B, Anderson JM, Anderson HM (1995) Palaeoecology of the Triassic Molteno Formation, Karoo Basin, South Africa—sedimentological and palaeontological evidence. S Afr J Geol 98:452–478Google Scholar
  39. Cariglino B, Gutiérrez PR (2011) Plant-insect interactions in a Glossopteris flora from the La Golondrina Formation (Guadalupian–Lopingian), Santa Cruz Province, Patagonia, Argentina. Ameghiniana 48:103–112CrossRefGoogle Scholar
  40. Carpenter FM (1960) A Triassic odonate from Argentina. Psyche 67:71–75CrossRefGoogle Scholar
  41. Carvalho M, Wilf P, Barrios H, Windsor DM, Currano ED, Labandeira CC, Jaramillo CA (2014) Insect leaf-chewing damage tracks herbivore richness in modern and ancient forests. PLoS One 9(5):e94950CrossRefGoogle Scholar
  42. Castagnoli M (1996) Ornamental coniferous and shade trees. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 661–671CrossRefGoogle Scholar
  43. Chen Z, Benton MJ (2012) The timing and pattern of biotic recovery following the end-Permian mass extinction. Nat Geosci 5:375–383. https://doi.org/10.1038/ngeo1475 CrossRefGoogle Scholar
  44. Childers CC (1997) Feeding and oviposition injuries to plants. In: Lewis T (ed) Thrips as Crop Pests. CAB International, Wallingford, UK, pp 505–537Google Scholar
  45. Cobben RH (1978) Evolutionary trends in Heteroptera. Part II. Mouthpart-structures and feeding strategies. Meded Landbouwhoesch Wageningen 78(5):1–407Google Scholar
  46. Comstock JA (1939) Studies in Pacific Coast Lepidoptera. Bull Calif Acad Sci 38:34–35Google Scholar
  47. Condamine FL, Nagalingum NS, Marshall CR, Morlon H (2015) Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evol Biol 15:65. https://doi.org/10.1186/s12862-015-0347-8 CrossRefGoogle Scholar
  48. Corbet PS (1999) Dragonflies: behaviour and ecology of Odonata. Harley Books, Colchester, UK, p 829Google Scholar
  49. Cornet B (1996) A new gnetophytes from the Late Carnian (Late Triassic) of Texas and its bearing on the origin of the angiosperm carpel and stamen. In: Taylor DW, Hickey LJ (eds) Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York, pp 32–67CrossRefGoogle Scholar
  50. Creber GT, Ash SF (2004) The Late Triassic Schilderia adamanica and Woodworthia arizonica trees of the Petrified Forest National Park, Arizona, USA. Palaeontology 47:21–38CrossRefGoogle Scholar
  51. De Lillo E, Monfreda R (2004) ‘Salivary secretions’ of eriophyoids (Acari: Eriophyoidea): first results of an experimental model. Exper Appl Acarol 34:291–306Google Scholar
  52. Ding Q, Labandeira CC, Ren D (2014) Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of Northeastern China and the leaf-mining biology of possible insect culprit clades. Arthro Syst Phyl 72:281–308Google Scholar
  53. Ding Q, Labandeira CC, Ren D (2015) Insect herbivory, plant-host specialization and tissue partitioning on mid-Mesozoic broadleaved conifers of Northeastern China. Palaeogeogr Palaeoclimatol Palaeoecol 440:259–273CrossRefGoogle Scholar
  54. Docters van Leeuwen-Reijnvaan J, Docters van Leeuwen WM (1926) The Zoocecidia of the Netherlands East Indies. Batavia, Drukkerij de Unie, p 601Google Scholar
  55. Donovan MP, Iglesias A, Wilf P, Labandeira CC, Cúneo NR (2016) Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat Ecol Evol 1:0012. https://doi.org/10.1038/s41559-016-0012 CrossRefGoogle Scholar
  56. Doorenweerd C, van Nieukerken EJ, Sohn J-C, Labandeira CC (2015) A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an early Cretaceous origin. Zootaxa 3963:295–334CrossRefGoogle Scholar
  57. Dreger-Jauffret F, Shorthouse JD (1992) Diversity of gall-inducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insectinduced galls. Oxford University Press, New York, pp 8–33Google Scholar
  58. Erwin DH (2006) Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton, p 296Google Scholar
  59. Evans JW (1971) Some Upper Triassic Hemiptera from Mount Crosby, Queensland. Mem Queensland Mus 16:145–151Google Scholar
  60. Felt EP (1917) Key to American insect galls. N Y State Mus Bull 200:1–310. pl 1–16Google Scholar
  61. Feng Z, Su T, Yang J, Chen Y, Wei H, Dai J, Guo Y, Liu J, Ding J (2014) Evidence for insect-mediated skeletonization on an extant fern family from the Upper Triassic of China. Geology 42:407–410CrossRefGoogle Scholar
  62. Feng Z, Wang J, Rößler R, Ślipiński A, Labandeira CC (2017) Late Permian wood-borings reveal an intricate network of ecological relationships. Nat Commun 8. https://doi.org/10.1038/s41467-017-00696-0
  63. Fenton B, Birch ANE, Malloch G, Lanham PG, Brennan RM (2000) Gall mite molecular phylogeny and its relationship to the evolution of plant host specificity. Expt Appl Acarol 24:831–861CrossRefGoogle Scholar
  64. Floyd D (1993) Oreophoetes peruana―a very unconventional stick insect! Amateur Entomol Soc 52:121–124, pl 10Google Scholar
  65. Fraser NB, Grimaldi DA, Olsen PC, Axsmith BA (1996) A Triassic Lagerstätte from eastern North America. Nature 380:615–620CrossRefGoogle Scholar
  66. Freeman TP, Goolsby JA, Oxman SK, Nelson DR (2005) An ultrastructural study of the relationship between the mite Floracarus perrepae Knihinicki & Boczek (Acariformes: Eriophyidae) and the fern Lygodium microphyllum (Lygodiaceae). Austral J Entomol 44:57–61CrossRefGoogle Scholar
  67. Funkhouser WD (1917) Biology of the Membracidae of the Cayuga Lake Basin. Cornell Univ Agric Expt Sta Mem 11:173–445Google Scholar
  68. Futuyma DJ, Mitter C (1996) Insect–plant interactions: the evolution of component communities. Phil Trans R Soc Lond B 351:1361–1366CrossRefGoogle Scholar
  69. Gallego OF (1997) Hallazgos de insectos Triásicos en la Argentina. Ameghiniana 34:511–516Google Scholar
  70. Gallego OF, Martins-Neto RG (1999) La entomofauna Mesozoica de la Argentina: Estado actual del conocimiento. Rev Soc Argentina 58:86–94Google Scholar
  71. Gallego OF, Martins-Neto RG, Nielsen SN (2005) Conchostracans and insects from the Upper Triassic of the Biobío river (‘Santa Juana Formation’), south-central Chile. Rev Geol Chile 32:293–311CrossRefGoogle Scholar
  72. Gangwere SK (1966) Relationships between the mandibles, feeding behavior, and damage inflicted on plants by the feeding of certain acridids (Orthoptera). Mich Entomol 1:13–16Google Scholar
  73. Gao T, Shih CK, Labandeira CC, Liu X, Wang ZQ, Che YL, Yin XC, Ren D (2017) Maternal care by Early Cretaceous cockroaches and the early evolution of the oothecate condition. J Syst Entomol (in press)Google Scholar
  74. Gastaldo RA, Adendorff R, Bamford M, Labandeira CC, Neveling J, Sims H (2005) Taphonomic trends of macrofloral assemblages across the Permian–Triassic boundary, Karoo Basin, South Africa. PALAIOS 20:480–498CrossRefGoogle Scholar
  75. Geertsema H, van den Heever JA (1996) A new beetle, Afrocupes firmae gen. et sp. nov. (Permocupedidae), from the Late Palaeozoic Whitehill Formation of South Africa. So Afr J Sci 92:497–499Google Scholar
  76. Geertsema DE, van Dijk DE, van den Heever JA (2002) Palaeozoic insects of Southern Africa: a review. Palaeont Afr 38:19–25Google Scholar
  77. Geinitz HB (1876) Ueber rhätischen Pflanzen und Thierreste in den Argentinischen Provinzen, La Rioja, San Juan, und Mendoza. Palaeontographica Suppl 3:1–14Google Scholar
  78. Gerson U (1996) Secondary associations: eriophyoid mites on ferns. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 227–230CrossRefGoogle Scholar
  79. Geyer G, Kelber K-P (1987) Flügelreste und Lebensspuren von Insekten aus dem Unteren Keuper Mainfrankens. Neues Jb Geol Paläontol Abh 174:331–355Google Scholar
  80. Ghosh AK, Kar R, Chatterjee R (2015) Leaf galls on Dicroidium hughesii (Feistmantel) Lele from the Triassic of India―a new record. Alcheringa 39:92–98CrossRefGoogle Scholar
  81. Gieshagen K (1919) Entwicklungsgeschichte einer Milbengalle an Nephrolepis biserrata Schott. Jahr Wiss Bot 58:66–104. pls 2–3Google Scholar
  82. Gnaedinger SC, Adami-Rodrigues K, Gallego OF (2014) Endophytic oviposition on leaves from the Late Triassic of northern Chile: Ichnotaxonomic, palaeobiogeographic and palaeoenvironment considerations. Geobios 47:221–236CrossRefGoogle Scholar
  83. Golden M, Follett PA, Wright MG (2006) Assessing Nezara viridula (Hemiptera: Pentatomidae) feeding damage in macadamia nuts by using a biological stain. J Econ Entomol 99:822–827CrossRefGoogle Scholar
  84. Grauvogel-Stamm L, Kelber K-P (1996) Plant–insect interactions and coevolution during the Triassic in Western Europe. Paleontol Lomb 5:5–23Google Scholar
  85. Grimaldi DA, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, p 755Google Scholar
  86. Günthart H, Günthart MS (1983) Aguriahana germari (Zett.) (Hom. Auch. Cicadellidae, Typhlocybinae): breeding and specific feeding behavior on pine needles. Mitt Schweizer Entomol Ges 56:33–44Google Scholar
  87. Hancox PJ (2000) The continental Triassic of South Africa. Zb Geol Paläontol 11–12:1285–1324Google Scholar
  88. Handley DT, Pollard JE (1993) Microscopic examination of tarnished plant bug (Heteroptera: Miridae) feeding damage to strawberry. J Econ Entomol 86:505–510CrossRefGoogle Scholar
  89. Haughton SH (1924) The fauna and stratigraphy of the Stormberg Series. Ann So Afr Mus 12:323–495Google Scholar
  90. Heer O (1877) Die Vorweltliche Flora der Schweiz. J. Wurster, Zürich, p 182. pls 1–70Google Scholar
  91. Hering EM (1951) Biology of the Leaf Miners. Springer, Dordrecht, p 420CrossRefGoogle Scholar
  92. Hermsen EJ, Taylor TN, Taylor EL, Stevenson DM (2006) Cataphylls of the Middle Triassic cycad Antarcticycas schopfii and new insights into cycad evolution. Am J Bot 93:724–738CrossRefGoogle Scholar
  93. Hochuli PA, Hermann E, Vigran JO, Bucher H, Weissert H (2010) Rapid demise and recovery of plant ecosystems across the end-Permian extinction event. Glob Planet Change 74:144–155CrossRefGoogle Scholar
  94. Hori K (1971) Studies on the feeding habits of Lygus disponsi Linnavuori (Hemiptera: Miridae) and the injury to its host plants. I. Histological observations of the injury. Appl Entomol Zool 6:84CrossRefGoogle Scholar
  95. Hsü J, Chu CN, Chen Y, Tuan SY, YF H, Chu WC (1974) new genera and species of the late Triassic plants from Yungjen, Yunnan I. Acta Bot Sin 16:266–278Google Scholar
  96. Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492CrossRefGoogle Scholar
  97. Jeppson LR, Keifer HH, Baker EW (1975) Mites Injurious to Economic Plants. University of California Press, Berkeley, Los Angeles and London, p 614. pls 1–74Google Scholar
  98. Johnson WT, Lyon HH (1991) Insects that feed on trees and shrubs, 2nd edn. Cornell University Press, Ithaca, NY, p 560Google Scholar
  99. Jurzitza G (1974) Antiagrion gayi (Selys, 1876) und A. grinsbergsi spec. nov., zwei Verwechslungsarten aus Chile (Zygoptera: Coenagrionidae). Odonatologica 3:221–239Google Scholar
  100. Kelber K-P (1988) Was ist Equisetites foveolatus? In: Hagdorn H (ed) Neue Forschung zur Erdegeschichte von Crailsheim. Sond Gesel Naturk Württemberg 1, pp 166–184Google Scholar
  101. Kelber K-P, Geyer G (1989) Lebensspuren von Insekten an Pflanzen des unteren Keupers. Cour Forsch Inst Senck 109:165–174Google Scholar
  102. Kellogg DW, Taylor EL (2004) Evidence of oribatid mite detritivory in Antarctica during the Late Paleozoic and Mesozoic. J Paleontol 78:1146–1153CrossRefGoogle Scholar
  103. Klavins SD, Kellogg DW, Krings M, Taylor EL, Taylor TN (2005) Coprolites in a Middle Triassic cycad pollen cone: evidence for insect pollination in early cycads? Evol Ecol Res 7:479–488Google Scholar
  104. Krantz GW, Lindquist EE (1979) Evolution of phytophagous mites (Acari). Annu Rev Entomol 24:121–158CrossRefGoogle Scholar
  105. Krassilov VA, Karasev E (2008) First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin, European Russia. Alavesia 2:247–252Google Scholar
  106. Krassilov VA, Karasev E (2009) Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr Palaeoclimat Palaeoecol 284:326–336CrossRefGoogle Scholar
  107. Krassilov V, Silantieva N, Lewy Z (2008) Traumas on fossil leaves from the Cretaceous of Israel. In: Krassilov V, Rasnitsyn A (eds) Plant–Arthropod interactions in the Early Angiosperm history: evidence from the Cretaceous of Israel. Pensoft/Brill, Sofia/Leiden, pp 7–187CrossRefGoogle Scholar
  108. Kraus JE, Montenegro G, Kim AJ (1993) Morphological studies on entomogenous stem galls of Microgramma squamulosa (Kauf.) Sota (Polypodiaceae). Am Fern J 83:120–128CrossRefGoogle Scholar
  109. Krzeminski W (1992) Triassic and Lower Jurassic stage of Diptera evolution. Mitt Schweiz Entomol Gesel 65:39–59Google Scholar
  110. Kustatscher E, Franz M, Heunisch C, Reich M, Wappler T (2014) Floodplain habitats of braided river systems: depositional environment, flora and fauna of the Solling Formation (Buntsandstein, Lower Triassic) from Bremke and Fürstenberg (Germany). Palaeobiodiv Palaeoenviron 94:237–270CrossRefGoogle Scholar
  111. Kustatscher E, van Konijnenburg-Van Cittert JHA (2013) Seed ferns from the European Triassic—an overview. In: Tanner LH, Spielmann JA, Lucas SG (eds) The Triassic System, vol 61. New Mexico Mus Nat Hist Sci Bull, New Mexico, pp 331–344Google Scholar
  112. Labandeira CC (1997) Insect mouthparts; ascertaining the paleobiology of insect feeding strategies. Annu Rev Ecol Syst 28:153–193CrossRefGoogle Scholar
  113. Labandeira CC (2002a) The paleobiology of predators, parasitoids and parasites: accommodation and death in the fossil record of terrestrial invertebrates. In: Kowalewski M, Kelley PH (eds) The fossil record of predation. Paleontol Soc Pap 8, pp 211–250Google Scholar
  114. Labandeira CC (2002b) The history of associations between plants and animals. In: Herrera C, Pellmyr O (eds) Plant–animal interactions: an evolutionary approach. Blackwell, Oxford, pp 248–261Google Scholar
  115. Labandeira CC (2005) The fossil record of insect extinction: new approaches and future directions. Am Entomol 51:14–29CrossRefGoogle Scholar
  116. Labandeira CC (2006a) Silurian to Triassic plant and insect clades and their associations: new data, a review, and interpretations. Arthro Syst Phylo 64:53–94Google Scholar
  117. Labandeira CC (2006b) The four phases of plant–arthropod associations in deep time. Geol Acta 4:409–438Google Scholar
  118. Labandeira CC (2010) The pollination of mid Mesozoic seed plants and the early history of long-proboscid insects. Ann Mo Bot Gard 97:469–513CrossRefGoogle Scholar
  119. Labandeira CC (2012) Evidence for outbreaks from the fossil record of insect herbivory. In: Barbosa P, Letorneau D, Agrawal A (eds) Insect outbreaks revisited. Blackwell, Oxford, pp 269–290Google Scholar
  120. Labandeira CC (2013a) Deep-time patterns of tissue consumption by terrestrial arthropod herbivores. Naturwissenschaften 99:255–264Google Scholar
  121. Labandeira CC (2013b) A paleobiological perspective on plant–insect interactions. Curr Opin Pl Biol 16:414–421CrossRefGoogle Scholar
  122. Labandeira CC (2016) Faunal ecology of the Molteno: towards an integrated ecology. In: Anderson JM, Anderson HM (eds) Molteno sphenophytes: Late Triassic biodiversity in southern Africa. Evol Stud Inst Monogr. Ser 1:14Google Scholar
  123. Labandeira CC, Allen EM (2007) Minimal insect herbivory for the Lower Permian Coprolite Bone bed locality of north-central Texas, USA, and comparison to other late Paleozoic floras. Palaeogeogr Palaeoclimatol Palaeoecol 247:197–219CrossRefGoogle Scholar
  124. Labandeira CC, Currano ED (2013) The fossil record of plant–insect dynamics. Annu Rev Earth Planet Sci 41:287–311CrossRefGoogle Scholar
  125. Labandeira CC, Kustatscher E, Wappler T (2016) Floral assemblages and patterns of insect herbivory during the Permian to Triassic of Northeastern Italy. PLoS One 11(11):e0165205CrossRefGoogle Scholar
  126. Labandeira CC, Phillips TL (1996) A Carboniferous petiole gall: insight into early ecologic history of the Holometabola. Proc Natl Acad Sci U S A 93:8470–8474CrossRefGoogle Scholar
  127. Labandeira CC, Prevec R (2014) Plant paleopathology and the roles of pathogens and insects. Internat J Paleopathol 4:1–16CrossRefGoogle Scholar
  128. Labandeira CC, Tremblay S, Bartowski KE, Hernick LV (2014) Middle Devonian liverwort herbivory and antiherbivore defense. New Phytol 200:247–258CrossRefGoogle Scholar
  129. Labandeira CC, Wilf P, Johnson KR, Marsh F (2007) Guide to insect (and other) damage types on compressed plant fossils. Version 3.0, Spring 2007. Smithsonian Institution, Washington, DC, p 25Google Scholar
  130. Lamb KP (1953) New plant galls. II―Description of seven new species of gall-mites and the galls which they cause. Trans R Soc New Zealand 80:371–382. pls. 78–83Google Scholar
  131. Larew HG (1981) A comparative anatomical study of galls caused by the major cecidogenetic groups, with special emphasis on the nutritive tissue. PhD thesis, Department of Entomology, Oregon State University, pp 392Google Scholar
  132. Larew HG (1992) Fossil galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 50–59Google Scholar
  133. Law C, Exley C (2011) New insight into silica deposition in horsetail (Equisetum arvense). BMC Plant Biol 11:112. https://doi.org/10.1186/1471-2229-11-112 CrossRefGoogle Scholar
  134. Lawton JH (1982) Vacant niches and unsaturated communities: a comparison of bracken herbivores at sites on two continents. J Anim Ecol 51:573–595CrossRefGoogle Scholar
  135. Lewandowski M, Kozak M (2008) Distribution of eriophyoid mites (Acari: Eriophyoidea) on coniferous trees. Exp Appl Acarol 44:89–99CrossRefGoogle Scholar
  136. Lin X, Shih MJH, Labandeira CC, Ren D (2016) New data from the Middle Jurassic of China shed light on the phylogeny and origin of the proboscis in the Mesopsychidae (Insecta: Mecoptera). BMC Evol Biol 16:1. https://doi.org/10.1186/s12862-015-0575-y CrossRefGoogle Scholar
  137. Linck O (1949) Fossile Bohrgänge (Anobichnium simile n.g. n.sp.) an einem Keuperholz. Neues Jb Mineral Geol Paläontol 1949:180–185Google Scholar
  138. Lozovsky VR, Balabanov YP, Karasev EV, Novikov IV, Ponomarenko AG, Yaroshenko OP (2016) The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian–Triassic boundary. Strat Geol Corr 24:364–380CrossRefGoogle Scholar
  139. MacRae C (1999) Life etched in stone: fossils of South Africa. Geological Society of South Africa, Johannesburg, p 305Google Scholar
  140. Maia VC, Santos MG (2011) A new genus and species of gall midge (Diptera, Cecidomyiidae) associated with Microgramma vaccinifolia (Langsd. & Fisch.) Copel. (Polypodiaceae) from Brazil. Rev Bras Entomol 55:40–44CrossRefGoogle Scholar
  141. Maskell WM (1887) An Account of the Insects Noxious to Agriculture and Plants in New Zealand. The Scale-Insects (Coccidae). State Forests and Agricultural Department, Wellington, p 116. pl 23CrossRefGoogle Scholar
  142. McElwain JC, Wagner PJ, Hesselbo SP (2009) Fossil plant relative abundances indicate sudden loss of Late Triassic biodiversity in East Greenland. Science 324:1554–1556CrossRefGoogle Scholar
  143. McKenna DD, Wild AL, Kojun K, Bellamy CL, Beutel RG, Caterino MS, Farnum CW, Hawks DC, Ivie MA, Jameson ML, Leschen RAB, Marvaldi AE, McHugh JV, Newton AF, Robertson JA, Thayer MK, Whiting MF, Lawrence JF, Ślipiński A, Maddison DR, Farrell BD (2015) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Syst Entomol 40:835–880CrossRefGoogle Scholar
  144. McLoughlin S (2011) New records of leaf galls and arthropod oviposition scars in Permian–Triassic Gondwanan gymnosperms. Austral J Bot 59:156–169CrossRefGoogle Scholar
  145. Meller B, Ponomarenko AG, Vasilenko DV, Fischer TC, Aschauer B (2011) First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am-See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54:97–110CrossRefGoogle Scholar
  146. Meng Q, Labandeira CC, Ding Q, Ren D (2017) The natural history of oviposition on a ginkgophyte fruit from the Middle Jurassic of Northeastern China. Ins Sci 24. https://doi.org/10.1111/1744-7917.12506
  147. Meyer J (1987) Plant galls and gall inducers. Gebrüder Borntraeger, Berlin, p 291Google Scholar
  148. Minello LF (1994) As “florestas petrificadas” da região de São Pedro do Sul e Mata, R.S. III—análise morfológica megascópica, afinidades e consideraçõs paleoambentais. Acta Geol Leopold 39:75–91Google Scholar
  149. Mitter C, Farrell B, Wiegmann B (1988) The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat 132:107–128CrossRefGoogle Scholar
  150. Moisan P, Labandeira CC, Matushkina N, Wappler T, Voigt S, Kerp H (2012) Lycopsid–dragonfly associations and odonatopteran oviposition on Triassic herbaceous Isoetites. Palaeogeogr Palaeoclimatol Palaeoecol 344–345:6–15CrossRefGoogle Scholar
  151. Moreno T, Gibbons W (eds) (2007) The geology of Chile. The Geological Society, LondonGoogle Scholar
  152. Nalepa A (1909) Eriophyiden. Denk Kaiser Akad Wiss Math-Naturwiss Klasse 84:523–536. pls 2–6Google Scholar
  153. Nathorst AG (1876) Bidrag till Sveriges fossila Flora. Kongl Sven Veten Akad Handl 14:1–82Google Scholar
  154. Nathorst AG (1878) Beiträge zur Fossilen Flora Schwedens. Über Einige Rhätische Pflanzen von Pälsjö in Schonen. E. Schweizerbart’sche Verlagshandlung, Stuttgart, p 82Google Scholar
  155. Needham JG, Frost SW, Tothill BH (1928) Leaf-mining insects. Williams & Wilkins, Baltimore, p 351Google Scholar
  156. Nel A, Prokop J (2006) New fossil gall midges from the earliest Eocene French amber (Insecta, Diptera, Cecidomyiidae). Geodiversitas 28:3754Google Scholar
  157. Oldfield GN (1996) Diversity and host plant specificity. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 199–216CrossRefGoogle Scholar
  158. Oldfield GN (2005) Biology of gall-inducing Acari. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology, and evolution of gall-inducing arthropods, vol 1. Science Publishers, Enfield, NH, pp 35–57Google Scholar
  159. Papier F, Nel A, Grauvogel-Stamm L, Gall J-C (1997) La plus ancienne sauterelle Tettigoniidae, Orthoptera (Trias, NE France): mimétisme ou exaptation? Paläontol Z 71:71–77CrossRefGoogle Scholar
  160. Patra B, Bera S (2007) Herbivore damage to ferns caused by a chrysomelid beetle from lower Gangetic Plains of West Bengal, India. Am Fern J 97:19–29CrossRefGoogle Scholar
  161. Pedersen KR, Crane PR, Friis EM (1989) The morphology and phylogenetic significance of Vardekloeftia Harris (Bennettitales). Rev Palaeobot Palynol 60:7–24CrossRefGoogle Scholar
  162. Pinto ID (1956) Artrópodos da Formação Santa Maria (Triássico Superior) do Rio Grande do Sul, cum notícias sôbre alguns restos vegetais. Bol Soc Brasil Geol 5:75–94. pls. 1–4Google Scholar
  163. Pinto ID, de Ornellas LP (1974) A new insect Triassoblatta cargnini Pinto et Ornellas, sp. nov., a Triassic blattoid from Santa Maria Formation, South Brazil. An Acad Brasil Cien 46:515–521Google Scholar
  164. Pollard DG (1973) Plant penetration by feeding aphids (Hemiptera: Aphidoidea): a review. Bull Entomol Res 62:631–714CrossRefGoogle Scholar
  165. Ponomarenko AG (2016) Insects during the time around the Permian–Triassic crisis. Paleontol J 50:174–186CrossRefGoogle Scholar
  166. Pott C, Krings M, Kerp H (2007) A surface microrelief on the leaves of Glossophyllum florinii (?Ginkgoales) from the Upper Triassic of Lunz, Austria. Bot J Linn Soc 153:87–95CrossRefGoogle Scholar
  167. Pott C, Labandeira CC, Krings M, Kerp H (2008) Fossil insect eggs and ovipositional damage on bennettitalean leaf cuticles from the Carnian (Upper Triassic) of Australia. J Paleontol 82:778–789CrossRefGoogle Scholar
  168. Prevec R, Labandeira CC, Neveling J, Gastaldo RA, Looy CV, Bamford M (2009) Portrait of a Gondwanan ecosystem: a new late Permian fossil locality from KwaZulu-Natal, South Africa. Rev Palaeobot Palynol 156:454–493CrossRefGoogle Scholar
  169. Prinzing A, Ozinga WA, Brändle M, Courty PE, Hennion F, Labandeira CC, Parisod C, Pihain M, Bartish IV (2017) Benefits from living together? Clades whose species use similar habitats may persist as a result of eco-evolutionary feedbacks. New Phytol 213:67–82CrossRefGoogle Scholar
  170. Pritchard AE (1951) The fern mite. Calif Agric 5:10Google Scholar
  171. Pryer KM, Schuettpelz E, Wolf PG, Schneider H, Smith AR, Cranfill R (2004) Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am J Bot 91:1582–1598CrossRefGoogle Scholar
  172. Queiroz JM (2002) Distribution, survivorship and mortality sources in immature stages of the Neotropical leaf miner Pachyschelus coeruleipennis Kerremans (Coleoptera: Buprestidae). Bras J Biol 62:69–76CrossRefGoogle Scholar
  173. Quintero C, Garibaldi LA, Grez A, Polidori C, Nieves-Aldrey JL (2014) Galls of the temperate forest of southern South America: Argentina and Chile. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 429–463Google Scholar
  174. Ramezani J, Fastovsky DE, Bowring SA (2014) Revised chronostratigraphy of the lower Chinle Formation strata in Arizona and New Mexico (USA): high precision U-Pb geochronological constraints on the Late Triassic evolution of dinosaurs. Am J Sci 314:981–1006CrossRefGoogle Scholar
  175. Rasnitsyn AP (1969) Proiskhozhdenie i ehvolyutsiya nizshikh pereponchatokrylykh [The origin and evolution of lower Hymenoptera]. Tr Paleontol Inst 123:1–196Google Scholar
  176. Retallack GJ (1995) Permian–Triassic life crisis on land. Science 267:77–80CrossRefGoogle Scholar
  177. Retallack GJ, Dilcher DL (1988) Reconstructions of selected seed ferns. Ann Missouri Bot Gard 75:1010–1057CrossRefGoogle Scholar
  178. Retana-Salazar AP, Nishida K (2007) First gall-inducing thrips on Elaphoglossum ferns: a new genus and species of thrips, Jersonithrips galligenus from Costa Rica (Insecta, Thysanoptera, Phlaeothripidae). Senck Biol 87:143–148Google Scholar
  179. Riek EF (1955) Fossil insects from the Triassic Beds at Mt. Crosby, Queensland. Austral J Zool 3:654–691CrossRefGoogle Scholar
  180. Riek EF (1974) Upper Triassic insects from the Molteno “Formation”, South Africa. Palaeontol Afr 17:19–31Google Scholar
  181. Riek EF (1976a) A new collection of insects from the Upper Triassic of South Africa. Ann Natal Mus 22:791–820Google Scholar
  182. Riek EF (1976b) An unusual mayfly (Insecta: Ephemeroptera) from the Triassic of South Africa. Palaeont Afr 19:149–151Google Scholar
  183. Rohfritsch O (1992) Patterns in gall development. In: Shorthouse JD, Rohfritsch O (eds) Biology of insect-induced galls. Oxford University Press, New York, pp 60–86Google Scholar
  184. Roopnarine PD, Angielczyk KD (2007) Trophic network models explain instability of Early Triassic terrestrial communities. Proc R Soc B 274:2077–2086CrossRefGoogle Scholar
  185. Roopnarine PD, Angielczyk KD (2015) Community stability and selective extinction during the Permian–Triassic mass extinction. Science 350:90–93CrossRefGoogle Scholar
  186. Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats. The fauna of collards. Ecol Monogr 43:95–124CrossRefGoogle Scholar
  187. Roselt G (1954) Ein neuer Schachtelhalm aus dem Keuper und Beiträgezur Kenntnis von Neocalamites meriani Brongn. Geologie 3:617–643Google Scholar
  188. Rozefelds AC (1985) A fossil zygopteran nymph (Insecta, Odonata) from the Late Triassic Aberdare Conglomerate, southeast Queensland. Proc Roy Soc Queensland 96:25–32Google Scholar
  189. Rozefelds AC, Sobbe I (1987) Problematic insect leaf mines from the Upper Triassic Ipswich coal measures southeastern Queensland, Australia. Alcheringa 11:51–57CrossRefGoogle Scholar
  190. Sadler C, Parker W, Ash S (2015) Dawn of the Dinosaurs. The Late Triassic in the American Southwest. Petrified Forest Museum Association, Petrified Forest, AZ, p 124Google Scholar
  191. Sarzetti LC, Labandeira CC, Muzón j WP, Cúneo NR, Johnson KR, Genise JF (2009) Odonatan endophytic oviposition from the Eocene of Patagonia: the ichnogenus Paleoovoidus and implications for dragonfly behavioral stasis. J Paleontol 83:431–447CrossRefGoogle Scholar
  192. Schachat S, Labandeira CC (2015) Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects. Sci Nat 102:14. https://doi.org/10.1007/s00114-015-1266-7 CrossRefGoogle Scholar
  193. Schachat S, Labandeira CC, Gordon J, Chaney DS, Levi S, Halthore M, Alvarez J (2014) Plant–insect interactions from the Early Permian (Kungurian) Colwell Creek Pond, north-central Texas: the early spread of herbivory in clastic environments. Int J Plant Sci 175:855–890CrossRefGoogle Scholar
  194. von Schlechtendal DHR (1916) Eriophyidocecidien die durch Gallmilben verursachten Pflanzengallen. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 295–498. pls 1–28Google Scholar
  195. Schlüter T (1990) Fossil insect localities in Gondwanaland. Entomol Gen 15:61–76CrossRefGoogle Scholar
  196. Schlüter T (1997) Validity of the Paratrichoptera—an extinct order related to the Mecoptera, Diptera, Trichoptera or Lepidoptera? Suggestions based on discoveries in the Upper Triassic Molteno Formation of South Africa. Berl Geowiss Abh 25:303–312Google Scholar
  197. Schlüter T (2000) Moltenia rieki n. gen., n. sp. (Hymenoptera: Xyelidae?), a tentative sawfly from the Molteno Formation (Upper Triassic), South Africa. Paläontol Z 74:75–78Google Scholar
  198. Schlüter T (2003) Fossil insects in Gondwana—localities and palaeodiversity trends. Acta Zool Cracovien 46:345–371Google Scholar
  199. Schmitz OJ (2008) Herbivory from individuals to ecosystems. Annu Rev Ecol Evol Syst 39:133–152CrossRefGoogle Scholar
  200. Schneider J (1966) Ennemis des fougeres ornementales. Phytoma 18:26–32Google Scholar
  201. Scott AC, Anderson JM, Anderson HM (2004) Evidence of plant–insect interactions in the Upper Triassic Molteno Formation of South Africa. J Geol Soc Lond 161:401–410CrossRefGoogle Scholar
  202. Selden PA, Anderson HM, Anderson JM (2009) A review of the fossil spiders (Araneae) with special reference to Africa, and description of a new specimen from the Triassic Molteno Formation of South Africa. Afr Invert 50:105–116CrossRefGoogle Scholar
  203. Selden PA, Anderson JM, Anderson HM, Fraser NC (1999) Fossil araneomorph spiders from the Triassic of South Africa and Virginia. J Arachnol 27:401–414Google Scholar
  204. Shcherbakov DE (2000) Permian faunas of Homoptera (Hemiptera) in relation to phytogeography and the Permo–Triassic crisis. Paleontol J 34:A251–S267Google Scholar
  205. Shcherbakov DE (2008a) Insect recovery after the Permian/Triassic crisis. Alavesia 2:125–131Google Scholar
  206. Shcherbakov DE (2008b) On Permian and Triassic insect faunas in relation to biogeography and the Permian–Triassic crisis. Paleontol J 42:15–31Google Scholar
  207. Shcherbakov DE, Lukashevich ED, Blagoderov VA (1995) Triassic Diptera and initial radiation of the order. Int J Dipterol Res 6:75–115Google Scholar
  208. Shepard HH (1947) Insects infesting stored grain and seeds. Univ Minnesota Agric Expt Sta Bull 340:1–31Google Scholar
  209. Shields O (1988) Mesozoic history and neontology of Lepidoptera in relation to Trichoptera, Mecoptera, and angiosperms. J Paleontol 62:251–258CrossRefGoogle Scholar
  210. Sidor CA, Vilhena DA, Angielczyk KD, Huttenlocker AK, Nesbitt SJ, Peecook BR, Steyer JS, Smith RMH, Tsuji LA (2013) Provincialization of terrestrial faunas following the end-Permian mass extinction. Proc Natl Acad Sci U S A 110:8129–8133CrossRefGoogle Scholar
  211. Sidorchuk EA, Schmidt AR, Ragazzi E, Roghi G, Lindquist EE (2015) Plant-feeding mite diversity in Triassic amber (Acari: Tetrapodili). J Syst Palaeontol 13:129–151CrossRefGoogle Scholar
  212. Solomon JD (1995) Guide to insect borers in North American Broadleaf trees and shrubs. US Dept Agric For Serv Agric Hand AH706, Washington DC, p 735Google Scholar
  213. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Tr Ecol Evol 18:512–522CrossRefGoogle Scholar
  214. Strullu-Derrien G, McLoughlin S, Phillipe M, Mørk A, Strullu DG (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58CrossRefGoogle Scholar
  215. Sun Y, Joachimski MM, Wignall PB, Yan C, Chen Y, Jiang H, Wang L, Lai X (2012) Lethally hot temperatures during the Early Triassic greenhouse. Science 338:366–370CrossRefGoogle Scholar
  216. Swezey OH (1915) A leaf-mining cranefly in Hawaii. Proc Hawaiian Entomol Soc 3:87–89CrossRefGoogle Scholar
  217. Talhouk AMS (1969) Insects and mites injurious to crops in Middle Eastern Countries. Mon Angew Entomol 21:1–239Google Scholar
  218. Tapanila L, Roberts EM (2012) The earliest evidence of holometabolan insect pupation in conifer wood. PLoS One 7:e31668CrossRefGoogle Scholar
  219. Tillyard RJ (1917) Mesozoic insects of Queensland. No. 1. Planipennia, Trichoptera, and the new order Protomecoptera. Proc Linn Soc NSW 42:175–200, pls. 7–9Google Scholar
  220. Tillyard RJ (1918a) Mesozoic insects of Queensland. No. 3. Odonata and Protodonata. Proc Linn Soc NSW 43:417–436, pls. 44–45Google Scholar
  221. Tillyard RJ (1918b) Permian and Triassic insects from New South Wales, in the collection of Mr. John Mitchell. Proc Linn Soc NSW 43:720–756, pl. 59Google Scholar
  222. Tillyard RJ (1918c) Mesozoic insects of Queensland. No. 4. Hemiptera Heteroptera: the family Dunstaniidae, with a note on the origin of the Heteroptera. Proc Linn Soc NSW 43:568–592Google Scholar
  223. Tillyard RJ (1919a) Mesozoic insects of Queensland. No. 5. Mecoptera, the new order Paratrichoptera, and additions to Planipennia. Proc Linn Soc NSW 44:194–212Google Scholar
  224. Tillyard RJ (1919b) Mesozoic insects of Queensland. No. 6. Blattodea. Proc Linn Soc NSW 44:358–382Google Scholar
  225. Tillyard RJ (1920) Mesozoic insects of Queensland. No. 7. Hemiptera Homoptera; with a note on the phylogeny of the suborder. Proc Linn Soc NSW 44:857–895Google Scholar
  226. Tillyard RJ (1921) Mesozoic insects of Queensland. No. 8. Hemiptera Homoptera (contd.). The genus Mesogereon; with a discussion of its relationship with the Jurassic Palaeotinidae. Proc Linn Soc NSW 46:270–284, pls. 16–21Google Scholar
  227. Tillyard RJ (1922) Mesozoic insects of Queensland. No. 9. Orthoptera, and additions to the Protorthoptera, Odonata, Hemiptera and Planipennia. Proc Linn Soc NSW 47:447–470, pls. 51–53Google Scholar
  228. Tillyard RJ (1923) Mesozoic insects of Queensland. No. 10. Summary of the Upper Triassic insect fauna of Ipswich, Q. (With an appendix describing new Hemiptera and Planipennia). Proc Linn Soc NSW 48:481–498, pl. 43Google Scholar
  229. Tillyard RJ (1925) A new fossil insect wing from Triassic beds near Deewhy, N.S.W. Proc Linn Soc NSW 50:374–377, pl. 36Google Scholar
  230. Tillyard RJ (1926) Alleged Rhaetic “crane flies” from South America, not Diptera but Homoptera. Am J Sci 5:265–272CrossRefGoogle Scholar
  231. Tillyard RJ (1937) A small collection of fossil cockroach remains from the Triassic beds of Mount Crosby, Queensland. Proc Roy Soc Queensland 48:35–40Google Scholar
  232. Tillyard RJ, Dunstan B (1916) Mesozoic and Tertiary insects of Queensland and New South Wales. Description of the fossil insects and stratigraphical features. Queensland Geol Surv Publ 253:1–60, pls. 1–8Google Scholar
  233. Tillyard RJ, Dunstan B (1923) Mesozoic insects of Queensland. Part 1. Introduction and Coleoptera. Queensland Geol Surv Publ 273:1–88, pls. 1–7Google Scholar
  234. Tong J, Zhang S, Zuo J, Xiong X (2007) Events during Early Triassic recovery from the end-Permian extinction. Glob Planet Change 55:66–80CrossRefGoogle Scholar
  235. Turner BR (1975) The stratigraphy and Sedimentary History of the Molteno Formation in the Main Karoo Basin of South Africa and Lesotho. Unpublished PhD thesis. Johannesburg: University of the Witwatersrand, pp 314Google Scholar
  236. Turner BR (1978) Trace fossils from the upper Triassic fluviatile Molteno Formation of the Karoo (Gondwana) Supergroup, Lesotho. J Paleontol 52:959–963Google Scholar
  237. Vacante V (2016) The handbook of mites of economic plants: identification, bioecology and control. Commonwealth Agricultural Board International, Wallingford, UK, p 872Google Scholar
  238. Vincent J (1990) Fracture properties of plants. Adv Bot Res 17:235–287CrossRefGoogle Scholar
  239. Vishniakova VN (1968) Mesozoic cockroaches with the external ovipositor and peculiarity of their reproduction (Blattodea). In: Rohdendorf BB (ed) Jurassic insects of Karatau. Nauka, Moscow, pp 55–86. (in Russian)Google Scholar
  240. Visscher H, Brinkhuis H, Dilcher DL, Elsik WC, Eshet Y, Looy CV, Rampino MR, Traverse A (1996) The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc Natl Acad Sci U S A 93:2155–2158CrossRefGoogle Scholar
  241. Vogel S (2012) The life of a leaf. University of Chicago Press, Chicago, p 303CrossRefGoogle Scholar
  242. Walker MV (1938) Evidence of Triassic insects in the Petrified Forest National Monument, Arizona. Proc US Natl Mus 85:137–141, pls. 1–4CrossRefGoogle Scholar
  243. Walker JD, Geissman JW, Bowring SA, Babcock LE (2013) The Geological Society of America geologic time scale. Geol Soc Am Bull 125:259–272CrossRefGoogle Scholar
  244. Wang J, Labandeira CC, Zhang S-F, Bek J, Pfefferkorn HW (2009) Permian Circulipuncturites discinisporis Labandeira, Wang, Zhang, Bek et Pfefferkorn gen. et sp. nov. (formerly Discinispora) from China, an ichnotaxon of punch-and-sucking insect on Noeggeranthialean spores. Rev Palaeobot Palynol 156:277–282CrossRefGoogle Scholar
  245. Wappler T (1999) Die Orthopteren (Insekten der Molteno) Formation (Ober–Trias) im Südlichen Afrika. Clausthal Technical University, Diplomarbeit, Clausthal, Germany, p 96Google Scholar
  246. Wappler T (2000a) Triassische Insekten aus dem Karoo-Becken im südlichen Afrika. Arbeit Paläontol. Hannover 28:68–84Google Scholar
  247. Wappler T (2000b) New Orthoptera and Grylloblattida (Insecta) from the Upper Triassic (Carnian) Karoo-System in southern Africa. First Internat Meet Paleoarthropodology (Ribeirão Preto, Brazil), pp. 34–35Google Scholar
  248. Wappler T (2001) Haglidae (Insecta: Orthoptera) aus der obertriassischen Molteno-Formation im südlichen Afrika. N Jb Geol Paläontol Abh 222:329–352Google Scholar
  249. Wappler T, Kustatscher E, Dellantonio E (2015) Plant–insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, NItaly)―initial pattern and response to abiotic environmental perturbations. PeerJ 3:e921. https://doi.org/10.7717/peerj.921 CrossRefGoogle Scholar
  250. Watt MN (1920) The leaf-mining insects of New Zealand. Part 1―the genus Parectopa (Lepidoptera). Trans Proc N Z Inst 52:439–466, pl 30Google Scholar
  251. Webb JA (1982) Triassic species of Dictyophyllum from eastern Australia. Alcheringa 6:79–81CrossRefGoogle Scholar
  252. Weber H (1930) Biologie der Hemipteren: Eine Naturgeschichte der Schnabelkerfe. Julius Springer, Berlin, p 543CrossRefGoogle Scholar
  253. Weintraub JD, Cook MA, Scoble MJ (1994) Notes on the systematics and ecology of a fern-feeding looper moth, Entomopteryx amputata (Lepidoptera: Geometridae). Malayan. Nat J 47:355–367Google Scholar
  254. Welke G (1959) Zur Kenntnis von Strongylogaster xanthoceros (Steph.) und Strongylogaster lineata (Christ) und ihrer Parasiten. Beitr Entomol 9:233–292Google Scholar
  255. Wesenberg-Lund G (1913) Fortpflanzungsverhältnisse: Paarung und Eiblage der Süsswasserinsekten. Fortschr Naturwiss Forsch 8:161–286Google Scholar
  256. Wesenberg-Lund G (1943) Biologie der Süsswasserinsekten. J. Springer, Berlin, Vienna, p 682CrossRefGoogle Scholar
  257. Westphal E (1977) Morphogenese, ultrastructure et etiologie de quelques galles d’eriophyes (Acariens). Marcellia 39:193–375Google Scholar
  258. Westphal E (1992) Cecidogenesis and resistance phenomena in mite-induced galls. In: Shorthouse JD, Rohfritsch O (eds) Biology of insectinduced galls. Oxford University Press, New York, pp 141–156Google Scholar
  259. Westphal E, Manson DCM (1996) Feeding effects on host plants: gall formation and other distortions. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites—their biology, natural enemies and control. Elsevier Science B.V, Amsterdam, pp 231–242CrossRefGoogle Scholar
  260. Whitfield JB, Kjer KM (2008) Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annu Rev Entomol 53:449–472CrossRefGoogle Scholar
  261. Wilf P, Labandeira CC (1999) Response of plant-insect associations to Paleocene–Eocene warming. Science 284:2153–2156CrossRefGoogle Scholar
  262. Wilf P, Labandeira CC, Johnson KR, Coley PD, Cutter AD (2001) Insect herbivory, plant defense, and early Cenozoic climate change. Proc Natl Acad Sci U S A 98:6221–6226CrossRefGoogle Scholar
  263. Wilf P, Labandeira CC, Johnson KR, Ellis B (2006) Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:1112–1115CrossRefGoogle Scholar
  264. Wilson J (1980) Macroscopic features of wind damage to leaves of Acer pseudoplatanus L. and its relationship with season, leaf age, and windspeed. Am Bot 46:303–311CrossRefGoogle Scholar
  265. Windsor D, Ness J, Gomez LD, Jolivet PH (1999) Species of Aulacoscelis Duponchel and Chevrolat (Chrysomelidae) and Nomotus Gorham (Languriidae) feed on fronds of Central American cycads. Coleopt Bull 53:217–231Google Scholar
  266. Yang E, Xu L, Yang Y, Zhang X, Xiang M, Wang C, An Z, Liu X (2012) Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci U S A 109:10960–10965CrossRefGoogle Scholar
  267. Yothers MA (1934) Biology and control of tree hoppers injurious to fruit trees in the Pacific Northwest. US Dept Agric Tech Bull 402:1–45Google Scholar
  268. Zeuner FE (1961) A Triassic insect fauna from the Molteno beds of South Africa. Proc 11th Congr Entomol 1:303–306Google Scholar
  269. Zherikhin VV (2002) Ecological history of the terrestrial insects. In: Rasnitsyn AP, Quicke DLJ (eds) History of insects. Kluwer, Dordrecht, pp 331–388Google Scholar
  270. Zinovjev AG (2006) Taxonomic position and biology of Potania myrtillifoliae Benson, 1960 (Hymenoptera: Tenthredinidae). In: Blank SM, Schmidt S, Taeger A (eds) Recent sawfly research: synthesis and prospects. Goecke & Evers, Keltern, pp 139–142Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Conrad C. Labandeira
    • 1
    • 2
    • 3
  • John M. Anderson
    • 4
  • Heidi M. Anderson
    • 4
  1. 1.Department of PaleobiologyNational Museum of Natural History, Smithsonian InstitutionWashington, DCUSA
  2. 2.Department of Entomology and BEES ProgramUniversity of MarylandCollege ParkUSA
  3. 3.College of Life SciencesCapital Normal UniversityBeijingChina
  4. 4.Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations